Geodesic Curvature (Curvature of a curve)

Can anyone point me to good reference that fully develops the geometry of geodesic curvature? Most of the ones I have manage to derive it, then show it's the normal to the curve, then never mention it again.

I want to know how it relates to the metric, first second or third.

Thanks.
 
255
0
Reality_Patrol said:
Can anyone point me to good reference that fully develops the geometry of geodesic curvature? Most of the ones I have manage to derive it, then show it's the normal to the curve, then never mention it again.

I want to know how it relates to the metric, first second or third.

Thanks.
I'm not sure what you mean by "first second or third." But, as I seem to be endlessly saying, I recommend Do Carmo's Geometry of Curves of Surfaces for a very rich discussion of curvature (geodesic curvature in particular) in 3-space and what it means. Much of the topic regarding curves in a general Riemannian manifold is similar in flavor.

As far as I know, the geodesic curvature isn't the normal of the tangent of the curvature, rather it is more or less the length of the derivative of the tangent vector, and it tells you whether the curve is instanteneously geodesic at a particular point or not.
 
987
54
I think he means first and second fundamental forms. Is there a third fundamental form?
 
255
0
it occurs to me that you might find what you're looking for in the 2nd volume of Spivak's A Comprehensive Introduction of Differential Geometry.

In order to better answer your question, it would help to know what your objective is in studying geodesic curvature (ie what do you want to do with it?) and what resources you've looked up so far.
 
Doodle Bob said:
As far as I know, the geodesic curvature isn't the normal of the tangent of the curvature, rather it is more or less the length of the derivative of the tangent vector, and it tells you whether the curve is instanteneously geodesic at a particular point or not.
That's exactly the kind of thing I'm looking for, but I'd like to see it developed in a more explicit form of course. Thanks for the references, I'm studying GR. But I've found that the geometry is clearer to me if developed in 3-space first then generalized to n-space. Thanks guys.
 
255
0
Reality_Patrol said:
What publication does this paper come from? It's excellent, and I want to find more like it.
It is indeed very cool. Thanks for pointing it out.
 

robphy

Science Advisor
Homework Helper
Insights Author
Gold Member
5,378
658
Reality_Patrol said:
What publication does this paper come from? It's excellent, and I want to find more like it.
http://arxiv.org hosts e-prints, which may or may not end up in other publications [like journals or books]. To find others like it, I'd start by searching for other articles by the authors on arxiv.org and on the web using http://scholar.google.com/ . Then, I'd search for similar topics and titles.
 
Last edited by a moderator:

Related Threads for: Geodesic Curvature (Curvature of a curve)

Replies
6
Views
3K
  • Posted
Replies
2
Views
4K
Replies
0
Views
2K
Replies
3
Views
1K
  • Posted
Replies
0
Views
3K
  • Posted
Replies
2
Views
4K
Replies
53
Views
3K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top