A Geodesic Expansion: Finding the $\theta_{\pm}$ Factor

  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Expansion Geodesic
Click For Summary
The discussion focuses on the mathematical derivation of the $\theta_{\pm}$ factor in the context of geodesic expansion. Participants analyze the expressions involving $U_{\pm}$ and the implications of the $\frac{1}{\sqrt{2}}$ factor, questioning its origin and relevance in the equations presented. There is confusion regarding the absence of this factor in the simplified equation for $\theta_{\pm}$, prompting inquiries about its significance. The conversation references external materials for additional context on black holes and geodesic expansion. The discussion highlights the complexities of tensor calculus in this theoretical framework.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
1625163149807.png


\begin{align*}
\mathrm{\mathbf{(a)}} \quad U_{\pm} \cdot U_{\pm} &= \dfrac{1}{2} (n_a n^a \pm 2 n_a m^a + m_a m^a) = \pm n_a m^a = 0 \\
U_+ \cdot U_- &= \dfrac{1}{2} (n_a n^a - m_a m^a) = \dfrac{1}{2} (-1-1) = -1 \\ \\

\mathrm{\mathbf{(b)}} \quad P^a_b &= \delta^a_b + U_{\mp}^a (U_{\pm})_b + U_{\pm}^a (U_{\mp})_b \\

&= \delta^a_b + \dfrac{1}{2} (n^a \mp m^a)(n_b \pm m_b) + \dfrac{1}{2} (n^a \pm m^a)(n_b \mp m_b) \\

&= \delta^a_b + n^a n_b - m^a m_b \\

&= h^a_b - m^a m_b \\ \\

\mathrm{\mathbf{(c)}} \quad \theta_{\pm} &= P^{ab} \nabla_a (U_{\pm})_b \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) \nabla_a (n_b \pm m_b) \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (K_{ab} - n_a n^c \nabla_c n _b) \pm \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (k_{ab} - m_a m^c \nabla_c m _b) \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) K_{ab} - \dfrac{1}{\sqrt{2}} \underbrace{h^{ab} n_a}_{= \, 0} n^c \nabla_c n_b + \dfrac{1}{\sqrt{2}} m^b \underbrace{m^a n_a}_{= \, 0} n^c \nabla_c n_b \\

&\hspace{45pt} \pm \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (k_{ab} - m_a m^c \nabla_c m _b) \\ \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) K_{ab} \pm \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (k_{ab} - m_a m^c \nabla_c m _b)
\end{align*}Why is there a factor of ##\dfrac{1}{\sqrt{2}}##, and how do you re-write the second term?
 
Last edited:
Physics news on Phys.org
robphy said:
Is the \frac{1}{\sqrt{2}} from the definition of U^a_{\pm}?
Yeah, one thing I don't understand is why the ##\dfrac{1}{\sqrt{2}}## doesn't appear in the equation ##\theta_{\pm} = (h^{ab} - m^a m^b)K_{ab} \pm k## in the question.
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
0
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K