Graduate Geodesic Expansion: Finding the $\theta_{\pm}$ Factor

  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    Expansion Geodesic
Click For Summary
The discussion focuses on the mathematical derivation of the $\theta_{\pm}$ factor in the context of geodesic expansion. Participants analyze the expressions involving $U_{\pm}$ and the implications of the $\frac{1}{\sqrt{2}}$ factor, questioning its origin and relevance in the equations presented. There is confusion regarding the absence of this factor in the simplified equation for $\theta_{\pm}$, prompting inquiries about its significance. The conversation references external materials for additional context on black holes and geodesic expansion. The discussion highlights the complexities of tensor calculus in this theoretical framework.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
1625163149807.png


\begin{align*}
\mathrm{\mathbf{(a)}} \quad U_{\pm} \cdot U_{\pm} &= \dfrac{1}{2} (n_a n^a \pm 2 n_a m^a + m_a m^a) = \pm n_a m^a = 0 \\
U_+ \cdot U_- &= \dfrac{1}{2} (n_a n^a - m_a m^a) = \dfrac{1}{2} (-1-1) = -1 \\ \\

\mathrm{\mathbf{(b)}} \quad P^a_b &= \delta^a_b + U_{\mp}^a (U_{\pm})_b + U_{\pm}^a (U_{\mp})_b \\

&= \delta^a_b + \dfrac{1}{2} (n^a \mp m^a)(n_b \pm m_b) + \dfrac{1}{2} (n^a \pm m^a)(n_b \mp m_b) \\

&= \delta^a_b + n^a n_b - m^a m_b \\

&= h^a_b - m^a m_b \\ \\

\mathrm{\mathbf{(c)}} \quad \theta_{\pm} &= P^{ab} \nabla_a (U_{\pm})_b \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) \nabla_a (n_b \pm m_b) \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (K_{ab} - n_a n^c \nabla_c n _b) \pm \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (k_{ab} - m_a m^c \nabla_c m _b) \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) K_{ab} - \dfrac{1}{\sqrt{2}} \underbrace{h^{ab} n_a}_{= \, 0} n^c \nabla_c n_b + \dfrac{1}{\sqrt{2}} m^b \underbrace{m^a n_a}_{= \, 0} n^c \nabla_c n_b \\

&\hspace{45pt} \pm \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (k_{ab} - m_a m^c \nabla_c m _b) \\ \\

&= \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) K_{ab} \pm \dfrac{1}{\sqrt{2}} (h^{ab} - m^a m^b) (k_{ab} - m_a m^c \nabla_c m _b)
\end{align*}Why is there a factor of ##\dfrac{1}{\sqrt{2}}##, and how do you re-write the second term?
 
Last edited:
Physics news on Phys.org
robphy said:
Is the \frac{1}{\sqrt{2}} from the definition of U^a_{\pm}?
Yeah, one thing I don't understand is why the ##\dfrac{1}{\sqrt{2}}## doesn't appear in the equation ##\theta_{\pm} = (h^{ab} - m^a m^b)K_{ab} \pm k## in the question.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K