MHB Geometry and Trigonometry Challenge

Click For Summary
The area of a circumscribing rectangle, denoted as \( A^2 \), is derived from the dimensions \( x \) and \( y \) of the inner rectangle and the angle \( \theta \). The formula for the area is \( A^2 = (x\cos\theta + y\sin\theta)(x\sin\theta + y\cos\theta) \), which simplifies to \( A^2 = xy + \frac{1}{2}(x^2 + y^2)\sin 2\theta \). The minimum area occurs when \( \theta = 0 \) or \( \pi/2 \), yielding \( A^2 = xy \), while the maximum area occurs at \( \theta = \pi/4 \), resulting in \( A^2 = \frac{1}{2}(x+y)^2 \). Consequently, \( A \) can take any value from \( \sqrt{xy} \) to \( \frac{1}{\sqrt{2}}(x+y) \) inclusively. This analysis provides a comprehensive understanding of the relationship between the dimensions of the rectangle and the area of the circumscribing rectangle.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
A rectangle with sides $x$ and $y$ is circumscribed by another rectangle of area $A^2$. Find all possible values of $A$ in terms of $x$ and $y$.
 
Mathematics news on Phys.org
[sp]Let $ABCD$ be the given rectangle and $PQRS$ a circumscribing rectangle, as in the diagram, where the angle $\theta = \angle PBA$ lies between $0$ and $\pi/2.$


Then $PQ = PB+BQ = x\cos\theta + y\sin\theta$ and $PS = x\sin\theta + y\cos\theta$. So the area of $PQRS$ is $$A^2 = ( x\cos\theta + y\sin\theta)(x\sin\theta + y\cos\theta) = xy(\sin^2\theta + \cos^2\theta) + (x^2+y^2)\sin\theta\cos\theta = xy + \tfrac12(x^2+y^2)\sin2\theta.$$ Thus the minimum value of A^2 is $xy$ (when $\theta=0$ or $\pi/2$) and the maximum value is $xy + \frac12(x^2+y^2) = \frac12(x+y)^2$ (when $\theta = \pi/4$). Finally, $A$ takes all values from $\sqrt{xy}$ to $\frac1{\sqrt2}(x+y)$ inclusive.[/sp]
 

Attachments

  • quad.png
    quad.png
    3.5 KB · Views: 108
Opalg said:
[sp]Let $ABCD$ be the given rectangle and $PQRS$ a circumscribing rectangle, as in the diagram, where the angle $\theta = \angle PBA$ lies between $0$ and $\pi/2.$


Then $PQ = PB+BQ = x\cos\theta + y\sin\theta$ and $PS = x\sin\theta + y\cos\theta$. So the area of $PQRS$ is $$A^2 = ( x\cos\theta + y\sin\theta)(x\sin\theta + y\cos\theta) = xy(\sin^2\theta + \cos^2\theta) + (x^2+y^2)\sin\theta\cos\theta = xy + \tfrac12(x^2+y^2)\sin2\theta.$$ Thus the minimum value of A^2 is $xy$ (when $\theta=0$ or $\pi/2$) and the maximum value is $xy + \frac12(x^2+y^2) = \frac12(x+y)^2$ (when $\theta = \pi/4$). Finally, $A$ takes all values from $\sqrt{xy}$ to $\frac1{\sqrt2}(x+y)$ inclusive.[/sp]

Well done, Opalg and thanks for participating!:)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
21
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K