MHB Geometry and Trigonometry Challenge

AI Thread Summary
The area of a circumscribing rectangle, denoted as \( A^2 \), is derived from the dimensions \( x \) and \( y \) of the inner rectangle and the angle \( \theta \). The formula for the area is \( A^2 = (x\cos\theta + y\sin\theta)(x\sin\theta + y\cos\theta) \), which simplifies to \( A^2 = xy + \frac{1}{2}(x^2 + y^2)\sin 2\theta \). The minimum area occurs when \( \theta = 0 \) or \( \pi/2 \), yielding \( A^2 = xy \), while the maximum area occurs at \( \theta = \pi/4 \), resulting in \( A^2 = \frac{1}{2}(x+y)^2 \). Consequently, \( A \) can take any value from \( \sqrt{xy} \) to \( \frac{1}{\sqrt{2}}(x+y) \) inclusively. This analysis provides a comprehensive understanding of the relationship between the dimensions of the rectangle and the area of the circumscribing rectangle.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
A rectangle with sides $x$ and $y$ is circumscribed by another rectangle of area $A^2$. Find all possible values of $A$ in terms of $x$ and $y$.
 
Mathematics news on Phys.org
[sp]Let $ABCD$ be the given rectangle and $PQRS$ a circumscribing rectangle, as in the diagram, where the angle $\theta = \angle PBA$ lies between $0$ and $\pi/2.$


Then $PQ = PB+BQ = x\cos\theta + y\sin\theta$ and $PS = x\sin\theta + y\cos\theta$. So the area of $PQRS$ is $$A^2 = ( x\cos\theta + y\sin\theta)(x\sin\theta + y\cos\theta) = xy(\sin^2\theta + \cos^2\theta) + (x^2+y^2)\sin\theta\cos\theta = xy + \tfrac12(x^2+y^2)\sin2\theta.$$ Thus the minimum value of A^2 is $xy$ (when $\theta=0$ or $\pi/2$) and the maximum value is $xy + \frac12(x^2+y^2) = \frac12(x+y)^2$ (when $\theta = \pi/4$). Finally, $A$ takes all values from $\sqrt{xy}$ to $\frac1{\sqrt2}(x+y)$ inclusive.[/sp]
 

Attachments

  • quad.png
    quad.png
    3.5 KB · Views: 97
Opalg said:
[sp]Let $ABCD$ be the given rectangle and $PQRS$ a circumscribing rectangle, as in the diagram, where the angle $\theta = \angle PBA$ lies between $0$ and $\pi/2.$


Then $PQ = PB+BQ = x\cos\theta + y\sin\theta$ and $PS = x\sin\theta + y\cos\theta$. So the area of $PQRS$ is $$A^2 = ( x\cos\theta + y\sin\theta)(x\sin\theta + y\cos\theta) = xy(\sin^2\theta + \cos^2\theta) + (x^2+y^2)\sin\theta\cos\theta = xy + \tfrac12(x^2+y^2)\sin2\theta.$$ Thus the minimum value of A^2 is $xy$ (when $\theta=0$ or $\pi/2$) and the maximum value is $xy + \frac12(x^2+y^2) = \frac12(x+y)^2$ (when $\theta = \pi/4$). Finally, $A$ takes all values from $\sqrt{xy}$ to $\frac1{\sqrt2}(x+y)$ inclusive.[/sp]

Well done, Opalg and thanks for participating!:)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
Replies
8
Views
2K
Replies
3
Views
1K
Back
Top