Getting a conserved charge out of the Kerr metric

Click For Summary
SUMMARY

The discussion focuses on computing the Komar integral for the Kerr metric, which describes rotating black holes. The integral is expressed as \( J = -\frac{1}{8 \pi G} \int_{\partial \Sigma} d^2 x \sqrt{\gamma^{(2)}} n_{\mu} \sigma_{\nu} \nabla^{\mu} R^{\nu} \). The participants verify the asymptotic behavior of various components, including the Christoffel symbols and the induced metric on the boundary. Ultimately, they confirm that the conserved charge associated with the Killing vector \( R = \partial_{\phi} \) yields \( J = Ma \), establishing the relationship between the mass \( M \) and angular momentum \( a \) of the black hole.

PREREQUISITES
  • Understanding of the Kerr metric and its components
  • Familiarity with the Komar integral and conserved charges in general relativity
  • Knowledge of Christoffel symbols and their computation
  • Proficiency in tensor calculus and differential geometry
NEXT STEPS
  • Study the derivation of the Kerr metric in detail
  • Learn about the physical implications of conserved charges in general relativity
  • Explore advanced topics in tensor calculus, particularly in the context of general relativity
  • Investigate the role of Killing vectors in the study of symmetries of spacetime
USEFUL FOR

Researchers in theoretical physics, particularly those specializing in general relativity, black hole physics, and mathematical physics. This discussion is also beneficial for graduate students seeking to deepen their understanding of the Kerr metric and its applications.

JD_PM
Messages
1,125
Reaction score
156
Homework Statement
I am struggling to evaluate certain limits while computing the Komar integral
Relevant Equations
N/A
Compute the Komar integral for the Kerr metric

\begin{equation*}
J=-\frac{1}{8 \pi G} \int_{\partial \Sigma} d^2 x \sqrt{\gamma^{(2)}} n_{\mu} \sigma_{\nu} \nabla^{\mu} R^{\nu}
\end{equation*}

The Kerr metric is given by

\begin{align*}

(ds)^2 &= -\left(1-\frac{2GMr}{\rho^2} \right)(dt)^2 - \frac{2GMar \sin^2 \theta}{\rho^2}(dt d\phi + d\phi dt) \\

&+ \frac{\rho^2}{\Delta}(dr)^2 + \rho^2 (d \theta)^2 + \frac{\sin^2 \theta}{\rho^2} \left[ (r^2+a^2)^2-a^2 \Delta \sin^2 \theta \right] (d \phi)^2

\end{align*}

Where

\begin{equation*}

\Delta = r^2 -2GMr+a^2

\end{equation*}

\begin{equation*}

\rho^2 = r^2+a^2 \cos^2 \theta

\end{equation*}The idea is to compute the conserved charge associated to the Killing vector ##R=\partial_{\phi}## via the Komar integral.

First off, we need to compute the inverse metric:

\begin{equation*}
g^{rr}= \frac{\Delta}{\rho^2}
\end{equation*}

\begin{equation*}
g^{\theta \theta}= \frac{1}{\rho^2}
\end{equation*}

\begin{equation*}
\begin{pmatrix}
g^{tt} & g^{t\phi} \\
g^{tt} & g^{t\phi} \\
\end{pmatrix}=
\begin{pmatrix}
g^{tt} & g^{t\phi} \\
g^{\phi t} & g^{\phi\phi} \\
\end{pmatrix}^{-1}=\frac{1}{g_{tt}g_{\phi\phi}-g_{t \phi}^2}\begin{pmatrix}
g_{\phi \phi} & -g_{t\phi} \\
-g_{\phi t} & g_{t t} \\
\end{pmatrix}
\end{equation*}

Where the following is particularly tedious to compute

\begin{equation*}
g_{tt}g_{\phi\phi}-g_{t \phi}^2 = -\Delta \sin^2 \theta
\end{equation*}

I got that the spacelike-hypersurface ##\Sigma## has the following unit normal vector ##n_{\mu}## associated to it

\begin{equation*}
n_{\mu} = \left( -\Delta^{1/2} \rho\left[ (r^2+a^2)^2 - a^2 \Delta \sin^2 \theta\right]^{-1/2},0,0,0 \right) \tag{1}
\end{equation*}

The boundary of ##\Sigma## i.e. ##\partial \Sigma## has the following unit normal vector ##\sigma_{\mu}## associated to it

\begin{equation*}
\sigma_{\mu} = \left(0,\frac{\rho}{\sqrt{\Delta}},0,0 \right) \tag{2}
\end{equation*}

I checked ##(1)## and ##(2)## and they are OK. My doubts come later.

The Killing vector ##R## can be expressed in component form

\begin{equation*}
R^{\mu} = (0,0,0,1)
\end{equation*}

Thus ##\partial_{\mu} R^{\nu}=0##. Now, let us compute ##n_{\mu}\sigma_{\nu} \nabla^{\mu} R^{\nu}##

\begin{align*}
n_{\mu}\sigma_{\nu} \nabla^{\mu} R^{\nu} &= n_{\mu}\sigma_{\nu}g^{\mu \rho} \nabla_{\rho} R^{\nu} \\
&= n_{\mu}\sigma_{\nu}g^{\mu \rho} \left( \partial_{\rho} R^{\nu} + \Gamma_{\rho \sigma}^{\nu} R^{\sigma}\right) \\
&= n_{\mu}\sigma_{\nu}g^{\mu \rho}\Gamma_{\rho \phi}^{\nu} R^{\phi} \\
&= n_{t}\sigma_{r}g^{t \rho}\Gamma_{\rho \phi}^{r} R^{\phi} \\
&= n_{t}\sigma_{r}\left( g^{tt}\Gamma_{t \phi}^{r} + g^{t \phi}\Gamma_{\phi \phi}^{r}\right)
\end{align*}

OK so far.

As ##\partial \Sigma## lies at infinity, we only need their leading-order behavior as ##r \to \infty##

\begin{equation*}
\Gamma_{t \phi}^{r} \to -\frac{GMa \sin^2 \theta}{r^2} \tag{3}
\end{equation*}

\begin{equation*}
\Gamma_{\phi \phi}^{r} \to -r \sin^2 \theta \tag{4}
\end{equation*}

\begin{equation*}
n_{t} \to -1 \tag{5}
\end{equation*}

\begin{equation*}
\sigma_{r} \to 1 \tag{6}
\end{equation*}

\begin{equation*}
g^{tt} \to -1 \tag{7}
\end{equation*}

\begin{equation*}
g^{t \phi} \to -\frac{2GMa}{r^3} \tag{8}
\end{equation*}

Which leads to

\begin{equation*}
n_{\mu}\sigma_{\nu} \nabla^{\mu} R^{\nu} \to -\frac{3GMa \sin^2 \theta}{r^2} \tag{9}
\end{equation*}

The induced metric on ##\partial \Sigma## is given by

\begin{equation*}
\gamma^{(2)}=\gamma^{(2)}_{\theta \theta} \gamma^{(2)}_{\theta \theta}= \sin^2 \theta \left[ (r^2+a^2)^2 - a^2 \Delta \sin^2 \theta\right]
\end{equation*}

Whose asymptotic behavior is

\begin{equation*}
\sqrt{\gamma^{(2)}} \to r^2 \sin \theta \tag{10}
\end{equation*}

I am aimed at checking ##(3),(4),(5),(6),(7),(8),(9)## and ##(10)##

Checking (3)


Applying the Christoffel symbol formula

\begin{align*}
\Gamma_{t \phi}^{r} &= \frac 1 2 g^{r \sigma} \left( \partial_t g_{\phi \sigma} + \partial_{\phi} g_{t \sigma} - \partial_{\sigma} g_{t \phi}\right) \\
&= \frac{\Delta}{2 \rho^2} \left[ \partial_r \left( \frac{4GMar \sin^2 \theta}{\rho^2} \right)\right]
\end{align*}

At this point, I thought of computing all brute force and the applying ##\lim_{r \to \infty}## via Hopital. But I do not get ##(3)##. I get something of the form

\begin{equation*}
\Gamma_{t \phi}^{r} \sim -\frac{r^2-r}{r^4+2r^2}\frac{3r^4+r^2}{(r^4+r^2)^2} \cancel{\to} -\frac{1}{r^2}
\end{equation*}

Mmm... what am I missing? should I approach it differently?

Checking (4)

I encounter the exact same issue as above.

Checking (5)

Similar issue: how to evaluate

\begin{equation*}
\lim_{r\to\infty} \left( -\Delta^{1/2} \rho\left[ (r^2+a^2)^2 - a^2\Delta \sin^2 \theta \right]^{-1/2}\right)
\end{equation*}

?

I am having really similar difficulties regarding ##(6),(7),(8),(9)##

Regarding ##(10)##; as ##r^4 >> 2r^2## at ##r \to \infty## we get

\begin{equation*}
\sqrt{\gamma^{(2)}} = \sqrt{\sin^2 \theta \left[ r^4+2(ra)^2+a^4 - a^2 \Delta \sin^2 \theta\right]} \to r^2 \sin \theta \tag{*}
\end{equation*}

Is this OK? If yes at least I would have got one! 😂

I appreciate your help.

Thank you! :biggrin:
 
Physics news on Phys.org
JD_PM said:
Checking (3)

Applying the Christoffel symbol formula

$$ \Gamma_{t \phi}^{r} = \frac 1 2 g^{r \sigma} \left( \partial_t g_{\phi \sigma} + \partial_{\phi} g_{t \sigma} - \partial_{\sigma} g_{t \phi}\right)
= \frac{\Delta}{2 \rho^2} \left[ \partial_r \left( \frac{4GMar \sin^2 \theta}{\rho^2} \right)\right]$$
I think the factor of 4 should just be a factor of 2.

Note that both ##\Delta## and ##\rho^2## approach ##r^2## for large ##r##. So, ##\large \frac{\Delta}{\rho^2}## ##\to 1## and ##\large \frac{r}{\rho^2} \to## ##1/r##.
 
  • Like
Likes   Reactions: JD_PM
Oh so I think we do not need to use l'Hôpital to evaluate the asymptotic behavior of
##(3),(4),(5),(6),(7),(8),(9),(10)##

I will check it again and post what I get
 
I was overcomplicating things! Actually it was pretty easy, I feel a bit ashamed! :doh:

Checking (3)

\begin{align*}
\Gamma_{t \phi}^{r} &= \frac 1 2 g^{r \sigma} \left( \cancel{\partial_t g_{\phi \sigma}} + \cancel{\partial_{\phi} g_{t \sigma}} - \partial_{\sigma} g_{t \phi}\right) \\
&= \frac{\Delta}{2 \rho^2} \left[ \partial_r \left( \frac{2GMar \sin^2 \theta}{\rho^2} \right)\right] \\
&\to \frac 1 2 \left[ \partial_r \left( \frac{2GMa \sin^2 \theta}{r} \right)\right] \\
&= -\frac{GMa \sin^2 \theta}{r^2}
\end{align*}

Where we used ##\large \frac{\Delta}{\rho^2} \to 1## and ##\large \frac{r}{\rho^2} \to 1/r##

Checking (4)

\begin{align*}
\Gamma_{\phi \phi}^{r} &= \frac 1 2 g^{r \sigma} \left( \cancel{\partial_{\phi} g_{\phi \sigma}} + \cancel{\partial_{\phi} g_{\phi \sigma}} - \partial_{\sigma} g_{\phi \phi}\right) \\
&= -\frac{\Delta}{2 \rho^2} \left[ \partial_r \left( \frac{\sin^2 \theta \left( (r^2+a^2)^2-a^2 \Delta \sin^2 \theta\right)}{\rho^2} \right) \right] \\
&\to -\frac{\sin^2 \theta}{2} \left[ \partial_r \left( \frac{r^4}{r^2} \right)\right]=-\frac{\sin^2 \theta}{2} \left[ \partial_r r^2 \right] \\
&= -r \sin^2 \theta
\end{align*}

Where we used ##\large \frac{\Delta}{\rho^2} \to 1## and ##\large \frac{\left( (r^2+a^2)^2-a^2 \Delta \sin^2 \theta\right)}{\rho^2} \to r^2##

Checking (5)

\begin{align*}
n_t &= -\Delta^{1/2} \rho\left[ (r^2+a^2)^2 - a^2 \Delta \sin^2 \theta\right]^{-1/2} \\
&\to -r^2\left( r^{-2} \right) \\
&= -1
\end{align*}

Where we used ##\Delta^{1/2} \rho \to r^2## and ##\left[ (r^2+a^2)^2 - a^2 \Delta \sin^2 \theta\right]^{-1/2} \to r^{-2}##

Checking (6)

\begin{equation*}
\sigma_r = \frac{\rho}{\sqrt{\Delta}} \to 1
\end{equation*}

Checking (7)

\begin{align*}
g^{tt} &= \frac{g_{\phi \phi}}{g_{tt}g_{\phi \phi} - g^2_{t\phi}} \\
&\to \frac{-r^2 \sin^2 \theta}{r^2 \sin^2 \theta} \\
&= -1
\end{align*}

Where we used ##g_{\phi \phi} \to r^2 \sin^2 \theta## and ##\Delta \to r^2##

Checking (8)

\begin{align*}
g^{t \phi} &= -\frac{g_{t \phi}}{g_{tt}g_{\phi \phi} - g^2_{t\phi}} \\
&= \frac{2GM a r}{-\Delta \rho^2} \\
&\to - \frac{2GMa}{r^3}
\end{align*}

Thus Checking (9) is straightforward

\begin{align*}
n_{\mu} \sigma_{\nu} \nabla^{\mu} R^{\nu} &= n_{t}\sigma_{r}\left( g^{tt}\Gamma_{t \phi}^{r} + g^{t\phi}\Gamma_{\phi \phi}^{r}\right) \\
&\to -\left(-\left(-\frac{GMa \sin^2 \theta}{r^2} \right) + \left(-\frac{2GMa}{r^3} \right) \left(-r \sin^2 \theta \right) \right) \\
&= -\frac{3GM a \sin^2 \theta}{r^2}
\end{align*}

(10) was OK

Thus the Komar integral yields

\begin{align*}
J&=-\frac{1}{8 \pi G} \int_{\partial \Sigma} d^2 x \sqrt{\gamma^{(2)}} n_{\mu} \sigma_{\nu} \nabla^{\mu} R^{\nu} \\
&= -\frac{1}{8 \pi G} \int_{0}^{2\pi} d \phi \int_{0}^{\pi} d \theta (r^2 \sin \theta) \left( -\frac{3GM a \sin^2 \theta}{r^2} \right) \\
&= \frac{3Ma}{8 \pi} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \sin^3 \theta \\
&= Ma
\end{align*}
 
  • Like
Likes   Reactions: TSny

Similar threads

  • · Replies 11 ·
Replies
11
Views
4K
Replies
0
Views
1K
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 4 ·
Replies
4
Views
975
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K