Wave equation for Schwarzschild metric

  • #1
2,169
190
Homework Statement
Wave equation for Schwarzschild metric
Relevant Equations
GR equations
I am trying to find the $$\nabla_{\mu}\nabla^{\mu} \Phi$$ for $$ds^2 = (1 - \frac{2M}{r})dt^2 + (1 - \frac{2M}{r})^{-1}dr^2 + r^2d\Omega^2$$

I have did some calculations by using

$$\nabla_{\mu}\nabla^{\mu}\Phi = \frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}g^{\mu \nu}\partial_{\nu}\Phi)$$

and I have found

$$\nabla_{\mu}\nabla^{\mu} \Phi = [g^{tt}\partial^2_t + 2(\frac{1}{r} - \frac{M}{r^2})\partial_r + g^{rr}\partial^2_r + \frac{cot(\theta)}{r^2}\partial_{\theta} + g^{\theta \theta}\partial^2_{\theta} + g^{\phi \phi}\partial^2_{\phi}]\Phi$$

but I am not sure that is this true or it can be further simplified ? Any ideas
 

Answers and Replies

  • #2
Hello, @Arman777 . I am recently studying this problem. I would suggest Spacetime and geometry by Sean M. Carroll, especialy in pages 395 to 400.

Will I violate any rules in this forum if I just suggest a book?
 
  • Like
Likes PeroK and vanhees71
  • #3
Of course not. Of course you violate rules, if you link to some illegal download-link to a copyrighted book.
 
  • #4
Of course not. Of course you violate rules, if you link to some illegal download-link to a copyrighted book.
Thanks! Sometimes I hesitate to answer in homework forum, because not only there are too many professors, but I am afraid I would give the answer directly which would violate the rules.
 
  • Like
Likes vanhees71 and PeroK
  • #5
Don't worry about the "professors". They are also just human beings. Not giving directly the answer is also my problem with the homework forums, but it's of course much better to give only hints first and let the student find the solution him or herself.
 
  • Like
Likes JD_PM and Haorong Wu

Suggested for: Wave equation for Schwarzschild metric

Replies
9
Views
635
Replies
3
Views
756
Replies
10
Views
740
Replies
20
Views
2K
Replies
1
Views
446
Replies
2
Views
1K
Replies
1
Views
2K
Back
Top