I Getting eigenvalues of an arbitrary matrix with programming

Trollfaz
Messages
143
Reaction score
14
I have learnt about the power iteration for any matrix say A.
How it works is that we start with a random compatible vector v0. We define vn+1 as
vn+1=( Avn)/|max(Avn)|
After an arbitrary large number of iterations vn will slowly converge to the eigenvector associated with the dominant eigenvalue of A. To get the dominant eigenvalue, simply divide Avn by vn. The inverse power iteration can be used to find the least dominant eigenvalue of A by performing the iterations on A-1 assuming A is not singular else, the least dominant eigenvalue of A is automatically 0.
Heres how my function looks like on python:
def dominant_eigen(matrix,precision):
v=random_vector(len(matrix))
for i in range(precision):
v=matrix_vector_product(matrix,v) #takes in A and v and returns Av
v=tuple(map(lambda x:x/infinity_norm_v(v),v)) #infinity_norm_v returns magnitude of the dominant row entry
Av=matrix_vector_product(matrix,v)
return {'eigenvector':v,'eigenvalue':Av[0]/v[0]}
Are there computer methods to get all the eigenvalues of any matrices?
 
Physics news on Phys.org
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top