Gibbs free energy of activation and activation energy

Click For Summary
SUMMARY

The discussion focuses on the distinction between Gibbs free energy of activation (ΔG‡) and Arrhenius activation energy (Ea) in chemical reactions. It establishes that ΔG‡ represents the minimum energy required for a non-spontaneous reaction to occur, while Ea is derived from empirical observations of reaction rates at varying temperatures. The relationship between these energies is mathematically expressed through equations such as ΔG‡ = ∆H‡ - T∆S‡ and ΔG‡ = Ea - RT - T∆S‡. The conversation emphasizes the temperature dependence of these energies and their implications in reaction kinetics and thermodynamics.

PREREQUISITES
  • Understanding of Gibbs free energy and its implications in thermodynamics
  • Familiarity with Arrhenius equation and activation energy concepts
  • Basic knowledge of transition state theory
  • Mathematical skills to interpret thermodynamic equations
NEXT STEPS
  • Study the relationship between Gibbs free energy and reaction spontaneity
  • Explore the Eyring equation and its application in reaction kinetics
  • Investigate the van't Hoff equation and its significance in temperature dependence of equilibrium constants
  • Review case studies on the practical applications of activation energy in chemical reactions
USEFUL FOR

Chemists, chemical engineers, and students studying thermodynamics and kinetics who seek to deepen their understanding of reaction mechanisms and energy barriers.

Govind
Messages
11
Reaction score
1
Let's consider a reaction A (reactant) -> B(product) and activated complex is denoted by C.

DPB_PHY_CHM_IX_C08_E01_295_Q01.png


This graph ( potential energy vs reaction coordinate ) tells us that reactant need some amount of activation energy (Ea) to convert in product, which has low potential energy which is shown here in terms of enthalpy ∆H. We can assume from this graph that activation represent same kind of potential energy between A (reactant) and C (activated complex ) that Enthalpy ∆H represent between A and B (product).

Now look at another graph of reaction (Gibbs free energy vs extent of reaction)

images.jpeg


This graph represents that activation energy is difference between Gibbs free energy of reactant and activated complex or there is also possibility that the activation energy shown here is not arrhenius activation energy Ea but it is Gibbs energy of activation ΔG‡ according to transition state theory.

Q. But to perform a reaction what amount of energy we need to supply to reactants arrhenius activation energy Ea or gibbs free energy of activation ΔG‡ ? I think it's ΔG‡ as defination of Gibbs free energy states - minimum amount of work needed to supply for a non spontaneous reaction (here A -> C ) to be happened but then why arrhenius theory states that - for reactants to transform into products, they must first acquire a minimum amount of energy, called the activation energy Ea ?

And also what these two energies represent physically in terms of bonds , interatomic interactions etc ?

Mathematical equations -

ΔG‡ = ∆H‡ - T∆S‡

ΔG‡ = Ea - RT - T∆S‡ ( ∆H‡ = Ea - RT )
 
Chemistry news on Phys.org
Arrhenius activation energy is an empirical construct from regression of reaction speed vs inverse Temperature. The point is that Delta G is itself a function of T, so that changing the temperature will not only have an explicit effect via change of 1/T but also an effect due to the temperature dependence. Also the pre-factor in the Eyring equation is temperature dependent. All this dependence on temperature makes up for the difference between Delta G in the Eyring equation and E_A in the Arrhenius equation. A similar dependence of the equilibrium constant on inverse temperature is known as van't Hoff equation.
 
  • Like
Likes   Reactions: Lord Jestocost
@Lord Jestocost I was actually asking that to perform a reaction what amount of energy we need to supply to reactants arrhenius activation energy Ea or gibbs free energy of activation ΔG‡
 
DrDu said:
Arrhenius activation energy is an empirical construct from regression of reaction speed vs inverse Temperature. The point is that Delta G is itself a function of T, so that changing the temperature will not only have an explicit effect via change of 1/T but also an effect due to the temperature dependence. Also the pre-factor in the Eyring equation is temperature dependent. All this dependence on temperature makes up for the difference between Delta G in the Eyring equation and E_A in the Arrhenius equation. A similar dependence of the equilibrium constant on inverse temperature is known as van't Hoff equation.
I was actually asking that to perform a reaction what amount of energy we need to supply to reactants arrhenius activation energy Ea or gibbs free energy of activation ΔG‡

Reference: https://www.physicsforums.com/threa...n-and-activation-energy.1054511/#post-6921068
 
Thermodynamics tells us that a reaction should go if the products are more stable (have a lower free energy) than the reactants – the reaction has a negative free energy change. Kinetics, on the other hand, tells us how fast the reaction will go, though doesn't tell us anything about the final state of things once it gets there.

Have a look at “Kinetics vs. Thermodynamics” from the University of Utah:

Lecture 1: Kinetics vs. Thermodynamics: different but related
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
18K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K