MHB Graded Algebra: Understanding Color Dirac Spinors in Space-Time

topsquark
Science Advisor
Homework Helper
Insights Author
MHB
Messages
2,020
Reaction score
843
I just read through a paper on a [math]\mathbb{Z} _ 3[/math] graded Algebra. In this instance we are talking about color Dirac spinors in space-time. It looks like the author is talking about [math]\left ( SU(3) \otimes L^4 \otimes \mathbb{Z}_2 \otimes \mathbb{Z} _2 \right ) \otimes \mathbb{Z} _3[/math]. ( SU(3) is the color group, [math]L_4 [/math] is the Lorentz group, [math]\mathbb{Z} _2 \otimes \mathbb{Z} _2[/math] is the Dirac 4-spinor group, and [math]\mathbb{Z} _3[/math] is the usual group on 3 elements.

I can (mostly) follow the paper assuming the tensor products, but what do they mean by the word "graded?"

Thanks!

-Dan
 
Physics news on Phys.org
In mathematics, an "algebra" is a vector space (so we can add vectors and multiply vectors by scalars) in which we can also multiply two vectors, the result being a vector. An algebra is said to be "graded" if we can divide the vectors into "grades" that are "closed" under addition and scalar multiplication (so the sum of two vectors in one "grade" are also in that "grade" and the product of a scalar and a vector in a given "grade" is in that same "grade") but the product of two vectors in the same "grade" is not necessarily in that "grade".

The simplest example of a "graded algebra" is the algebra of all polynomials. Each "grade" is the vector space of polynomials of degree "n" or less for some positive integer "n". Adding two polynomials of degree n or less gives a polynomial of degree n or less and multiplying a polynomial of degree n or less times a scalar (real or complex number) is a polynomial of degree n or less. But while the product of two polynomials of degree n or less is a polynomial it is not necessarily of degree n or less.
 
Thank you. That actually answers another question I had about the paper as well. I think I've got the idea now.

Thanks again!

-Dan
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
3
Views
2K
Replies
0
Views
392
2
Replies
69
Views
8K
Replies
42
Views
10K
2
Replies
93
Views
14K
Replies
12
Views
3K
Back
Top