MHB Graeme's YAnswers Question: The effect of changing values in sequences?

  • Thread starter Thread starter CaptainBlack
  • Start date Start date
  • Tags Tags
    Sequences
Click For Summary
Changing the initial value \(u_{0}\) in the sequence defined by \(u_{n+1}=2u_{n}+2\) significantly affects the entire sequence. The expanded form reveals that \(u_{n}\) can be expressed as \(u_{n} = 2^n u_{0} + 2^{n+1} - 2\), indicating a direct relationship between \(u_{0}\) and the terms of the sequence. As \(u_{0}\) varies, particularly with high negative values, the sequence's behavior flips, demonstrating a shift in its overall trend. The sequence's dependence on \(u_{0}\) can be analyzed further through mathematical induction or generating functions. Understanding this relationship is crucial for solving related mathematical problems.
CaptainBlack
Messages
801
Reaction score
0
The effect of changing values in sequences??

I have been given a maths assignment and have been given equations \(u_{n+1}=2u_{n}+2\) and asked what is the effect if the value \(u_{0}\) is changed? I used multiple values both positive and negative and have only noticed taht when it is a high negative number it flips up side down?

.
 
Mathematics news on Phys.org
Look at what happens as you expand the sequence:

\(u_{1} = 2 u_{0}+2\)
\(u_{2} = 2( 2 u_{0}+2 ) + 2 =2^2 u_{0} + 2^2 + 2\)
\(u_{3} = 2( 2^2 u_{0} + 2^2 + 2 ) + 2 = 2^3 u_{0} + 2^3 + 2^2 + 2\)
:
:
\(u_{n} = 2^n u_{0} + 2^n + 2^{n-1} + ... + 2^2 + 2\)

The earlier terms in the sequence above suggest the last one, which can be easily proven by induction.

The last term can now be simplified to:

\(u_{n} = 2^n u_{0} + 2^{n+1} - 2\)

So you now have all the information you need to answer questions about how the sequence depends on \(u_{0}\).
 
An alternative would be generating functions (which I'm quite fond of). (Inlove)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
29
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K