Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Gravitational Lagrangian density

  1. Jun 13, 2016 #1
    Hi, in gravitational theory the action integral is: I = ∫( − g ( x))^1/2 L ( x) d 4 x, but I do not know why there is a square root -g . Could you give me the proof of this integral???? I mean How is this integral constructed??? What is the logic of this???? Thanks in advance....
     
  2. jcsd
  3. Jun 13, 2016 #2

    ChrisVer

    User Avatar
    Gold Member

    The [itex]\int d^4 x[/itex] is not invariant...
    The [itex]\int d^4 x \sqrt{-g}[/itex] is invariant...
     
  4. Jun 13, 2016 #3

    George Jones

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

  5. Jun 13, 2016 #4

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    If you later study integration on manifolds, the general integral is defined using differential forms. The volume form must be completely antisymmetric and of the same rank as the dimension of the manifold. The permutation symbol is a tensor density and must be multiplied by a scalar density and the square root of the metric determinant is such a density of the correct weight, in order to become an n-form. Going to an orthogonal coordinate frame, you can conclude that the physical volume n-form is just the square root of the metric determinant multiplied by the permutation symbol. Going to a pseudo-Riemannian manifold, you also need to multiply with the sign of the determinant in order to make the square root real.
     
  6. Jun 14, 2016 #5

    stevendaryl

    User Avatar
    Staff Emeritus
    Science Advisor

    It's sort of straight-forward to see why [itex]\sqrt{|det(g)|}[/itex] comes up in 2-dimensions, but I guess the generalization to more dimensions requires the mathematics of forms.

    It might be worth looking at how it works in 2 spacelike dimensions. There, you can think of an integral over all space as the limit of a sum, where the sum is over little rectangles with sides [itex]\vec{\delta x}[/itex] and [itex]\vec{\delta y}[/itex]. The issue is: how to compute the area of the rectangle (in 3-D, it would be computing the volume of a parallelepiped, in 4-D, it would be computing the hypervolume of some 4-dimensional cell). In Cartesian coordinates, the displacement vectors [itex]\vec{\delta x}[/itex] and [itex]\vec{\delta y}[/itex] are orthogonal, and the lengths are just [itex]|\delta x|[/itex] and [itex]|\delta y|[/itex], respectively, so you just use the usual formula for area of a rectangle: [itex]A = |\delta x| |\delta y|[/itex]. But if you're using curvilinear coordinates, the two displacements are not necessarily orthogonal. In that case, how do you compute the area?

    Well, here's a heuristic argument: In good-old Euclidean space, the area of a parallelogram with sides [itex]\vec{U}[/itex] and [itex]\vec{V}[/itex] is given by:
    [itex]A = \vec{U} \times \vec{V} = |U||V| sin(\theta)[/itex] where [itex]\theta[/itex] is the angle between the two sides. We also know that:

    [itex]\vec{U} \cdot \vec{V} = |U||V| cos(\theta)[/itex]

    So we can relate the cross product to the dot product as follows:

    [itex] |\vec{U} \times \vec{V}|^2 = |U|^2 |V|^2 sin^2(\theta) = |U|^2 |V|^2 - |U|^2 |V|^2 cos^2(\theta) = (\vec{U} \cdot \vec{U}) (\vec{V} \cdot \vec{V}) - (\vec{U} \cdot \vec{V})^2[/itex]

    The dot-product can be written in terms of the metric:

    [itex]\vec{U} \cdot \vec{V} = g_{\mu \nu} U^\mu V^\nu[/itex]

    So we can rewrite the cross-product in terms of the metric:

    [itex] |\vec{U} \times \vec{V}|^2 = (g_{\mu \nu} g_{\alpha \beta} - g_{\mu \alpha} g_{\nu \beta}) U^\mu U^\nu V^\alpha V^\beta[/itex]

    Now, let's specialize to the case [itex]\vec{U} = \vec{\delta x}[/itex] and [itex]\vec{V} = \vec{\delta y}[/itex]. In that case, [itex]U^x = \delta x, U^y = 0, V^x = 0, V^y = \delta y[/itex]. So we have:

    [itex] |\vec{\delta x} \times \vec{\delta y}|^2 = (g_{x x} g_{y y} - g_{x y} g_{x y}) \delta x^2 \delta y^2[/itex] (All other terms are zero)

    Note that the expression involving the metric is just the determinate of the 2x2 matrix:

    [itex]\left( \begin{array} \\ g_{x x} & g_{x y} \\ g_{y x} & g_{y y} \end{array} \right)[/itex]

    So,

    [itex] |\vec{\delta x} \times \vec{\delta y}|^2 = det(g) \delta x^2 \delta y^2[/itex]

    So,

    [itex] |\vec{\delta x} \times \vec{\delta y}| = \sqrt{det(g)} \delta x \delta y[/itex]

    It would take a lot more work to see that this generalizes to more than 2 dimensions and to the case of a pseudo-Euclidean metric, but it gives you a little bit of the flavor for why something like [itex]\sqrt{det(g)}[/itex] might show up.
     
  7. Jun 14, 2016 #6

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    Not really, the main change to make for n dimensions is to use the completely anti-symmetric scalar n-tuple product. You can define it using the Levi-Civita symbol in Cartesian coordinates. It essentially boils down to finding a volume spanned by a parallelepiped.
     
  8. Jun 15, 2016 #7
    Stevendarly Thanks for your explanatory answer, but how do We obtain square root -g ????????? I can not see any -g term in your answer...
     
  9. Jun 15, 2016 #8

    haushofer

    User Avatar
    Science Advisor

    The minus sign is because you have one timelike direction in spacetime. Basically, one takes the absolute value of the determinant.

    You can also consult Zwiebach's string theory book, chapter 6.
     
  10. Jun 15, 2016 #9

    DrGreg

    User Avatar
    Science Advisor
    Gold Member

    ##\sqrt{-g}## is shorthand for ##\sqrt{-\text{det}(g)} = \sqrt{|\text{det}(g)|}##.
     
  11. Jun 19, 2016 #10
    Hi,ChrisVer you said [itex]\int d^4 x \sqrt{-g}[/itex] is invariant, but I see that integration of multiplication of lagrangian density and infinite small volume element is actually invariant, so I wonder if there is a proof or derivation of this situation. Could you provide me it's derivation ???
     
  12. Jun 19, 2016 #11

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    This is just a regular change of coordinates for a multivariable integral.
     
  13. Jun 19, 2016 #12
    pardon orodruin, would you mind spelling it out, or explain in more detail ????
     
  14. Jun 19, 2016 #13

    Ibix

    User Avatar
    Science Advisor

    The ##\sqrt{-g}## is doing the same job that ##r^2\sin^2\theta## is doing when you replace ##dxdydz## with ##r^2\sin^2\theta drd\theta d\phi##. It makes the volume of the infinitesimal parallelapiped defined by infinitesimal displacements in each of the coordinate directions invariant under coordinate transformation.
     
  15. Jun 19, 2016 #14
    Thanks for your valuable responses...
     
  16. Jun 19, 2016 #15

    ChrisVer

    User Avatar
    Gold Member

  17. Jun 22, 2016 #16
    hi, I was looking some equations related to invariance of lagrangian. In my attachment you can see that there are 4 equations, and while the we proceed to 4. equations from 3. equations (green box) you can see that first term and third term of 3. equation vanishes. I would like to ask how these terms vanish mathematically. Could you explain this situation using some mathematical demonstrations??????
     

    Attached Files:

  18. Jun 22, 2016 #17

    ChrisVer

    User Avatar
    Gold Member

    they are total derivatives within the integral, they will vanish eventually...
     
  19. Jun 23, 2016 #18
    Initially, thanks for your return, but I can not get the logic well So I am asking to visualize the concept in order to comprehend well : Could you explain in more detail using some mathematical stuff???
     
  20. Jun 23, 2016 #19

    haushofer

    User Avatar
    Science Advisor

    You use Stoke's theorem to convert these integrals into surface integrals. Upon using boundary conditions (variations at the boundary vanish), these terms will vanish.
     
  21. Jun 23, 2016 #20
    I can not prove it to myself by hand using your answers, Would you mind helping me a little bit more ????
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted