-gre.ge.04 intersection of parabola and line

Click For Summary
SUMMARY

The discussion focuses on determining the x-coordinate, denoted as v, of the intersection point between a linear function and a quadratic function in the xy-plane. The vertex of the quadratic function is located at (4, 19). Through the analysis of the equations y = a(x - 4)^2 + 19 and y = 4x - 9, the value of v is conclusively found to be 6, as derived from solving the quadratic equation x^2 - 4x - 12 = 0.

PREREQUISITES
  • Understanding of quadratic functions and their vertex form.
  • Knowledge of linear equations and their slope-intercept form.
  • Ability to solve quadratic equations using factoring.
  • Familiarity with the concept of intersection points in coordinate geometry.
NEXT STEPS
  • Study the properties of quadratic functions, particularly vertex form and transformations.
  • Learn how to derive intersection points of linear and quadratic equations.
  • Explore the use of the quadratic formula for solving equations.
  • Investigate graphical methods for finding intersections in the xy-plane.
USEFUL FOR

Students, educators, and anyone interested in algebraic functions, particularly those studying coordinate geometry and the relationships between linear and quadratic equations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
054.png

$\textbf{xy-plane}$ above shows one of the two points of intersection of the graphs of a linear function and and quadratic function.
The shown point of intersection has coordinates $\textbf{(v,w)}$ If the vertex of the graph of the quadratic function is at $\textbf{(4,19)}$,
what is the value of $\textbf{v}$?
${-6}\quad {6}\quad {5}\quad {7}\quad {8}$

ok before I plow into this one it seems obvious that v could not be known for certain by observation
(the graph does not look it is to scale)
so then we can only proceed with the intersections of the equations of
$$y=a(x-4)^2 +19 \quad y=\dfrac{9}{2}x-9$$

unless some other quickie could apply
 
Last edited:
Physics news on Phys.org
the line has equation $y=4x-9$

note the secant line from (0,3) to (4,19) is parallel to the line $y=4x-9$
 
skeeter said:
the line has equation $y=4x-9$
note the secant line from (0,3) to (4,19) is parallel to the line $y=4x-9$
$-\left(x^{2}-8x+16\right)-4x+9+19=0$
$x^{2}-4x-12=0$
$(x-6)(x+2)$
v=6

ok I couldn't see how the secant would make things obvious
 
Last edited:
karush said:

$\textbf{xy-plane}$ above shows one of the two points of intersection of the graphs of a linear function and and quadratic function.
The shown point of intersection has coordinates $\textbf{(v,w)}$ If the vertex of the graph of the quadratic function is at $\textbf{(4,19)}$,
what is the value of $\textbf{v}$?
${-6}\quad {6}\quad {5}\quad {7}\quad {8}$

ok before I plow into this one it seems obvious that v could not be known for certain by observation
(the graph does not look it is to scale)
so then we can only proceed with the intersections of the equations of
$$y=a(x-4)^2 +19 \quad y=\dfrac{9}{2}x-9$$
No! If x= 2, this gives y= 9- 9= 0, not -1. The point (2, -1) is just below the x-axis, not on it.

unless some other quickie could apply
 
karush said:
$-\left(x^{2}-8x+16\right)-4x+9+19=0$
$x^{2}-4x-12=0$
$(x-6)(x+2)$
v=6

ok I couldn't see how the secant would make things obvious

$\dfrac{w - (-1)}{v - 2} = 4$

note from the graph that $4 <v < 8$ and $3 < w < 19$

so, only two possible coordinates for $(v,w)$ ...

$(5,11)$ and $(6, 15)$

$(5,11)$ would be vertically midway between $(0,3)$ and $(4,19)$ if it were $(v,w)$.
 
ok i see
mahalo much
 

Similar threads

Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K