MHB -gre.ge.04 intersection of parabola and line

Click For Summary
The discussion revolves around finding the value of \( v \) at the intersection of a linear function and a quadratic function, given that the vertex of the quadratic is at \( (4,19) \). The equations of the functions are established, leading to the quadratic equation \( x^2 - 4x - 12 = 0 \), which factors to \( (x-6)(x+2) \). The value of \( v \) is determined to be 6, as it falls within the specified range of \( 4 < v < 8 \). Additional coordinates for the intersection points are suggested as \( (5,11) \) and \( (6,15) \). The analysis concludes with a confirmation of the calculations and the importance of the secant line in understanding the intersections.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
054.png

$\textbf{xy-plane}$ above shows one of the two points of intersection of the graphs of a linear function and and quadratic function.
The shown point of intersection has coordinates $\textbf{(v,w)}$ If the vertex of the graph of the quadratic function is at $\textbf{(4,19)}$,
what is the value of $\textbf{v}$?
${-6}\quad {6}\quad {5}\quad {7}\quad {8}$

ok before I plow into this one it seems obvious that v could not be known for certain by observation
(the graph does not look it is to scale)
so then we can only proceed with the intersections of the equations of
$$y=a(x-4)^2 +19 \quad y=\dfrac{9}{2}x-9$$

unless some other quickie could apply
 
Last edited:
Mathematics news on Phys.org
the line has equation $y=4x-9$

note the secant line from (0,3) to (4,19) is parallel to the line $y=4x-9$
 
skeeter said:
the line has equation $y=4x-9$
note the secant line from (0,3) to (4,19) is parallel to the line $y=4x-9$
$-\left(x^{2}-8x+16\right)-4x+9+19=0$
$x^{2}-4x-12=0$
$(x-6)(x+2)$
v=6

ok I couldn't see how the secant would make things obvious
 
Last edited:
karush said:

$\textbf{xy-plane}$ above shows one of the two points of intersection of the graphs of a linear function and and quadratic function.
The shown point of intersection has coordinates $\textbf{(v,w)}$ If the vertex of the graph of the quadratic function is at $\textbf{(4,19)}$,
what is the value of $\textbf{v}$?
${-6}\quad {6}\quad {5}\quad {7}\quad {8}$

ok before I plow into this one it seems obvious that v could not be known for certain by observation
(the graph does not look it is to scale)
so then we can only proceed with the intersections of the equations of
$$y=a(x-4)^2 +19 \quad y=\dfrac{9}{2}x-9$$
No! If x= 2, this gives y= 9- 9= 0, not -1. The point (2, -1) is just below the x-axis, not on it.

unless some other quickie could apply
 
karush said:
$-\left(x^{2}-8x+16\right)-4x+9+19=0$
$x^{2}-4x-12=0$
$(x-6)(x+2)$
v=6

ok I couldn't see how the secant would make things obvious

$\dfrac{w - (-1)}{v - 2} = 4$

note from the graph that $4 <v < 8$ and $3 < w < 19$

so, only two possible coordinates for $(v,w)$ ...

$(5,11)$ and $(6, 15)$

$(5,11)$ would be vertically midway between $(0,3)$ and $(4,19)$ if it were $(v,w)$.
 
ok i see
mahalo much
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...