MHB Greatest probability - Expected value

Click For Summary
SUMMARY

The discussion focuses on the geometric distribution with parameter $p \in (0,1)$, specifically its probability function defined as $f_X(x) = p(1-p)^{x-1}$. It is established that $f_X$ is strictly monotone decreasing, indicating that the mode occurs at $x=1$, which has the greatest probability. However, the expected value of a random variable $X$ with this distribution is $\frac{1}{p}$, illustrating a key distinction between mode and expected value in probability theory.

PREREQUISITES
  • Understanding of geometric distribution
  • Familiarity with probability functions
  • Knowledge of statistical metrics: Mode, Mean, and Median
  • Basic calculus for summation and differentiation
NEXT STEPS
  • Study the properties of geometric distribution in detail
  • Learn about the differences between mode and expected value in various distributions
  • Explore the concept of $\mathrm{arg\,max}$ in optimization problems
  • Investigate the implications of symmetric vs. asymmetric distributions on statistical metrics
USEFUL FOR

Mathematicians, statisticians, and students studying probability theory, particularly those interested in the nuances of geometric distributions and statistical metrics.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

The geometric distribution with parameter $p\in (0,1)$ has the probability function \begin{equation*}f_X(x)=p(1-p)^{x-1}, \ \ x=1, 2, 3, \ldots\end{equation*}

I have shown that $f_X$ for each value of $p\in (0,1)$ is strictly monotone decreasing, as follows:
\begin{align*}f_X(x+1)=p(1-p)^{x+1-1}=p(1-p)^{(x-1)+1}=p(1-p)^{x-1}(1-p)\overset{(\star)}{<}p(1-p)^{x-1}=f_X(x)\end{align*} $(\star)$ : Since $p\in (0,1)$ we have that \begin{equation*}0<p<1\Rightarrow -1<-p<0 \Rightarrow 0<1-p<1\end{equation*}

That means that the value $x=1$ has the greatest probability. But the expected value of a random variable $X$ with geometric distribution is $\frac{1}{p}$. Why is it like that and not equal to the value with the greatest probability? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Smile)

The value with the greatest probably is known as the Mode, which is:
$$\text{Mode} = \mathop{\mathrm{arg\,max}}_{x\in \mathbb N} f_X(x)$$
It is one of the Center metrics, just like Mean and Median.
However, the Expected Value, also known as Mean, is the average weighted on probability, or:
$$\text{Expected Value} = \sum_{x\in\mathbb N}xf_X(x)$$
If the distribution is symmetric, they are the same, but otherwise they are not. (Thinking)
 
I like Serena said:
The value with the greatest probably is known as the Mode, which is:
$$\text{Mode} = \mathop{\mathrm{arg\,max}}_{x\in \mathbb N} f_X(x)$$

What do you mean by arg? I got stuck right now. (Wondering)

I like Serena said:
However, the Expected Value, also known as Mean, is the average weighted on probability, or:
$$\text{Expected Value} = \sum_{x\in\mathbb N}xf_X(x)$$
If the distribution is symmetric, they are the same, but otherwise they are not. (Thinking)

Ah ok!
 
Last edited by a moderator:
mathmari said:
What do you mean by arg? I got stuck right now.

I introduced the $\mathrm{arg\,max}$ notation only to illustrate the difference with the expected value.
$\mathrm{arg\,max}$ is the value (the argument) for which the given expression takes its maximum. (Nerd)

In this case we can calculate the expected value with:
$$\text{Expected Value} = \sum_{x\in\mathbb N}xf_X(x) = \sum x p(1-p)^{x-1}
= p\sum x (1-p)^{x-1} = p \sum \d{}p\Big[-(1-p)^x\Big] \\
= -p \d{}p\left[ \sum (1-p)^x\right] = -p\cdot \d{}p\left[ \frac{1}{1-(1-p)}\right]
= -p\cdot \d{}p\left[ \frac 1p\right] = -p \cdot -\frac 1{p^2} = \frac 1p
$$
(Thinking)
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K