Greatest probability - Expected value

Click For Summary

Discussion Overview

The discussion revolves around the geometric distribution, specifically examining the relationship between the mode and the expected value of the distribution. Participants explore the properties of the probability function and the implications of these properties on the mode and expected value, which are central concepts in probability theory.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Mathematical reasoning

Main Points Raised

  • One participant demonstrates that the probability function of the geometric distribution is strictly monotone decreasing, leading to the conclusion that the mode occurs at $x=1$.
  • Another participant clarifies that the mode is defined as the value at which the probability function achieves its maximum, contrasting it with the expected value, which is calculated as a weighted average of all possible values.
  • There is a question regarding the meaning of the notation $\mathrm{arg\,max}$, which is explained as the argument that maximizes the given expression.
  • A participant provides a detailed calculation of the expected value for the geometric distribution, showing that it equals $\frac{1}{p}$.

Areas of Agreement / Disagreement

Participants generally agree on the definitions of mode and expected value, but there is an ongoing exploration of their relationship, with no consensus on why the expected value differs from the mode in this case.

Contextual Notes

The discussion includes mathematical steps that may depend on specific assumptions about the distribution and its properties, which are not fully resolved.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

The geometric distribution with parameter $p\in (0,1)$ has the probability function \begin{equation*}f_X(x)=p(1-p)^{x-1}, \ \ x=1, 2, 3, \ldots\end{equation*}

I have shown that $f_X$ for each value of $p\in (0,1)$ is strictly monotone decreasing, as follows:
\begin{align*}f_X(x+1)=p(1-p)^{x+1-1}=p(1-p)^{(x-1)+1}=p(1-p)^{x-1}(1-p)\overset{(\star)}{<}p(1-p)^{x-1}=f_X(x)\end{align*} $(\star)$ : Since $p\in (0,1)$ we have that \begin{equation*}0<p<1\Rightarrow -1<-p<0 \Rightarrow 0<1-p<1\end{equation*}

That means that the value $x=1$ has the greatest probability. But the expected value of a random variable $X$ with geometric distribution is $\frac{1}{p}$. Why is it like that and not equal to the value with the greatest probability? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Smile)

The value with the greatest probably is known as the Mode, which is:
$$\text{Mode} = \mathop{\mathrm{arg\,max}}_{x\in \mathbb N} f_X(x)$$
It is one of the Center metrics, just like Mean and Median.
However, the Expected Value, also known as Mean, is the average weighted on probability, or:
$$\text{Expected Value} = \sum_{x\in\mathbb N}xf_X(x)$$
If the distribution is symmetric, they are the same, but otherwise they are not. (Thinking)
 
I like Serena said:
The value with the greatest probably is known as the Mode, which is:
$$\text{Mode} = \mathop{\mathrm{arg\,max}}_{x\in \mathbb N} f_X(x)$$

What do you mean by arg? I got stuck right now. (Wondering)

I like Serena said:
However, the Expected Value, also known as Mean, is the average weighted on probability, or:
$$\text{Expected Value} = \sum_{x\in\mathbb N}xf_X(x)$$
If the distribution is symmetric, they are the same, but otherwise they are not. (Thinking)

Ah ok!
 
Last edited by a moderator:
mathmari said:
What do you mean by arg? I got stuck right now.

I introduced the $\mathrm{arg\,max}$ notation only to illustrate the difference with the expected value.
$\mathrm{arg\,max}$ is the value (the argument) for which the given expression takes its maximum. (Nerd)

In this case we can calculate the expected value with:
$$\text{Expected Value} = \sum_{x\in\mathbb N}xf_X(x) = \sum x p(1-p)^{x-1}
= p\sum x (1-p)^{x-1} = p \sum \d{}p\Big[-(1-p)^x\Big] \\
= -p \d{}p\left[ \sum (1-p)^x\right] = -p\cdot \d{}p\left[ \frac{1}{1-(1-p)}\right]
= -p\cdot \d{}p\left[ \frac 1p\right] = -p \cdot -\frac 1{p^2} = \frac 1p
$$
(Thinking)
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K