I Green's function boundary conditions

Click For Summary
The discussion focuses on the application of Green's identity to derive the potential in terms of the Green's function under specific boundary conditions. It highlights the necessity for the Green's function to satisfy certain conditions for Dirichlet and Neumann boundaries to simplify the integral expression for the potential. The query raised pertains to the mathematical justification for imposing these conditions on the Green's function without introducing inconsistencies. Reference to Jackson's text is made as a source of clarification on this topic. Understanding these requirements is crucial for ensuring the validity of the potential's representation.
deuteron
Messages
64
Reaction score
14
TL;DR
what is the motivation / justification behind the applied conditions on the Green's function for Dirichlet / Neumann boundary conditions
we know that, using the Green's identity ##\iiint\limits_V (\varphi \Delta\psi -\psi \Delta\varphi)\ dV =\iint_{\partial V} (\varphi \frac {\partial \psi}{\partial n}-\psi \frac {\partial\varphi}{\partial n})\ da## and substituting ##\varphi=\phi## and ##\psi=G## here, we can write the potential as:

$$\phi_{\vec r} = \iiint\limits_V \rho_{\vec r_q} G_{\vec r, \vec r_q}\ d^3r_q\ +\ \frac 1 {4\pi}\ [\iint _{\partial V} G_{\vec r, \vec r_q} \frac \partial {\partial n} \phi_{\vec r_q} - \phi_{\vec r_q} \frac{\partial G_{\vec r, \vec r_q}} {\partial n} \ da]$$

here, for the type of given boundary conditions, ( Dirichlet: ##\phi|_{\partial V}=\text{given}## or Neumann ##\frac {\partial \phi}{\partial n}|_{\partial V}=\text{given}##) we require, that the Green's function satisfies some conditions (Dirichlet: ##G|_{\partial V}=0##, Neumann: ##\frac {\partial G}{\partial n} |_{\partial V}=- \frac {4\pi}{\text{surface area of}\ \partial V}##)

I understand that these make our life easier when we substitute the Green's function into the above integral expression for ##\phi##
However, I am confused about *why* we are allowed to make these requirements on the Green's function. How are we mathematically sure that making this requirements would not cause a problem?
 
Physics news on Phys.org
I have found the answer in Jackson, section 1.10 page 18
 
Thread 'The rocket equation, one more time'
I already posted a similar thread a while ago, but this time I want to focus exclusively on one single point that is still not clear to me. I just came across this problem again in Modern Classical Mechanics by Helliwell and Sahakian. Their setup is exactly identical to the one that Taylor uses in Classical Mechanics: a rocket has mass m and velocity v at time t. At time ##t+\Delta t## it has (according to the textbooks) velocity ##v + \Delta v## and mass ##m+\Delta m##. Why not ##m -...

Similar threads

Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
263
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K