meopemuk
- 1,768
- 69
gptejms said:Please elaborate your statement--how does this contradict almost everything you know about quantum theory.
In quantum mechanics, every physical system is described by a Hilbert space. States of the system are described as unit vectors in this Hilbert space, and observables are described as Hermitian operators there. If we know the state vector and the operator of observable, we can calculate the probabilities of measurements of different values of this observable in this state and compare them with experiments.
In addition, we would like to know how the state vactor is transformed when the observer changes (the time dynamics is one example of such a transformation). This knowledge is provided by the interacting representation of the Poincare group acting in the Hilbert space of the system. The interacting Hamiltonian H is one (out of ten) generator of this representation. Also, one can always define the non-interacting representation of the Poincare group in the same Hilbert space with the time-translation generator H_0. Both H and H_0 act in the same Hilbert space.
The same principles work in quantum field theory. The only difference is that QFT deals with systems in which the number of particles is not conserved, so the Hilbert space is, actually, the Fock space with variable number of particles. This is how I understand quantum mechanics and QFT.
I don't know how one can justify introduction of two different Hilbert spaces (one for the interacting Hamiltonian and vacuum, and another for the non-interacting Hamiltonian and vacuum). I think these ideas (AKA "inequivalent representations of the canonical commutation relations") go against letter and spirit of quantum mechanics. These ideas are presented in many places (e.g., Umezawa "Thermo fields dynamics and condensed states") but they don't make sense to me.
Eugene.