- 24,753
- 795
I've been reviewing the Haggard Rovelli "Zeroth Law" paper, and now see it as a truly basic one.
I think it provides the conceptual framework for how general covariant statistical mechanics will be done.
Notice that because the idea of the "state of a system a given time" is not a covariant notion, we shift our focus from instantaneous state to protracted process.
"The core idea is to focus on histories rather than states.
Two systems placed in contact are described as two histories joined for a given interaction period.
In this conceptual framework, the paper shows how natural ideas of time, temperature, and equilibrium arise in a generally covariant way.
As an example, the authors give an elementary derivation of Wien's displacement law. (Section 5, page 4).
Thermal time turns out to be connected to the Heisenberg uncertainty principle, which thereby acquires new concrete meaning. See page 3, right before equation (14):
"In a sense it is 'time counted in natural elementary steps', which exist because the Heisenberg principle implies an effective granularity of the phase space."
http://arxiv.org/abs/1302.0724
Death and resurrection of the zeroth principle of thermodynamics
Hal M. Haggard, Carlo Rovelli
(Submitted on 4 Feb 2013)
The zeroth principle of thermodynamics in the form "temperature is uniform at equilibrium" is notoriously violated in relativistic gravity. Temperature uniformity is often derived from the maximization of the total number of microstates of two interacting systems under energy exchanges. Here we discuss a generalized version of this derivation, based on informational notions, which remains valid in the general context. The result is based on the observation that the time taken by any system to move to a distinguishable (nearly orthogonal) quantum state is a universal quantity that depends solely on the temperature. At equilibrium the net information flow between two systems must vanish, and this happens when two systems transit the same number of distinguishable states in the course of their interaction.
5 pages, 2 figures
As it happened this paper did quite well on our first quarter MIP poll
(over a quarter of us voted for it).
I think it provides the conceptual framework for how general covariant statistical mechanics will be done.
Notice that because the idea of the "state of a system a given time" is not a covariant notion, we shift our focus from instantaneous state to protracted process.
"The core idea is to focus on histories rather than states.
Two systems placed in contact are described as two histories joined for a given interaction period.
In this conceptual framework, the paper shows how natural ideas of time, temperature, and equilibrium arise in a generally covariant way.
As an example, the authors give an elementary derivation of Wien's displacement law. (Section 5, page 4).
Thermal time turns out to be connected to the Heisenberg uncertainty principle, which thereby acquires new concrete meaning. See page 3, right before equation (14):
"In a sense it is 'time counted in natural elementary steps', which exist because the Heisenberg principle implies an effective granularity of the phase space."
http://arxiv.org/abs/1302.0724
Death and resurrection of the zeroth principle of thermodynamics
Hal M. Haggard, Carlo Rovelli
(Submitted on 4 Feb 2013)
The zeroth principle of thermodynamics in the form "temperature is uniform at equilibrium" is notoriously violated in relativistic gravity. Temperature uniformity is often derived from the maximization of the total number of microstates of two interacting systems under energy exchanges. Here we discuss a generalized version of this derivation, based on informational notions, which remains valid in the general context. The result is based on the observation that the time taken by any system to move to a distinguishable (nearly orthogonal) quantum state is a universal quantity that depends solely on the temperature. At equilibrium the net information flow between two systems must vanish, and this happens when two systems transit the same number of distinguishable states in the course of their interaction.
5 pages, 2 figures
As it happened this paper did quite well on our first quarter MIP poll
Last edited: