A charged particle of mass m is attracted by a central force with magnitude [tex] F = \frac{k}{r^2} [/tex]. Find the Hamiltonian of the particle.(adsbygoogle = window.adsbygoogle || []).push({});

I'm just wondering if I did this correctly because it seemed too easy. First I used the fact that -dU/dr = F = k/r^2, so the potential (with infinite boundary) is given by

[tex] U(r) = \frac{-k}{r} [/tex]

Then using plane polar coordinates the Legrangian will be

[tex]L = T - U = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\theta}^2) + \frac{k}{r}[/tex]

The general momenta will be given by

[tex] \frac{\partial L}{\partial \dot{r}} = p_r = m \dot{r}/[tex]

and

[tex] \frac{\partial L}{\partial \dot{\theta}}= p_\theta = mr^2 \dot{\theta}[/tex]

Putting the momenta in terms of the dots of the generalized coordinates

[tex] \dot{r} = \frac{p_r}{m}[/tex]

and

[tex] \dot{\theta} = \frac{p_\theta}{mr^2}[/tex]

So the Hamiltonian will be

[tex]H(q_k, p_k) = \sum_j p_j \dot{q}_j - L(q_k, \dot{q}_k)[/tex]

i.e.

[tex]H(r, \theta, \dot{r}, \dot{\theta}) = \frac{p_r^2}{m} + \frac{p_\theta^2}{mr^2} - \frac{1}{2}m(\dot{r}^2 + r^2 \dot{\theta}^2) - \frac{k}{r}[/tex]

and with the momenta equations

[tex]H(r, \theta, \dot{r}, \dot{\theta}) = \frac{p_r^2}{m} + \frac{p_\theta^2}{mr^2} - \frac{1}{2}m((\frac{p_r}{m})^2 + r^2 (\frac{p_\theta}{mr^2})^2) - \frac{k}{r}[/tex]

simplified this will give the familiar H = T + U

[tex]H(r, \theta, \dot{r}, \dot{\theta}) = \frac{1}{2} \frac{p_r^2}{m} + \frac{1}{2} \frac{p_\theta^2}{mr^2} - \frac{k}{r}[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Hamiltonian of charged particle

**Physics Forums | Science Articles, Homework Help, Discussion**