Hamiltonian of the quantised Klein-Gordon theory

Click For Summary
SUMMARY

The Hamiltonian of the quantized Klein-Gordon theory is established as ##H = \int \frac{d^{3}p}{(2\pi)^{3}}\omega_{\vec{p}}[a_{\vec{p}}^{\dagger}a_{\vec{p}}+\frac{1}{2}(2\pi)^{3}\delta^{(3)}(0)]##. The derivation involves integrating the expressions for the Klein-Gordon field ##\phi(\vec{x})## and its conjugate momentum ##\pi(\vec{x})##, leading to a formulation that incorporates the creation and annihilation operators ##a_{\vec{p}}## and ##a_{\vec{p}}^{\dagger}##. The calculations confirm the relationship between the Hamiltonian and the energy density of the field, demonstrating the correctness of the approach taken in the discussion.

PREREQUISITES
  • Understanding of quantum field theory (QFT) concepts
  • Familiarity with the Klein-Gordon equation
  • Knowledge of creation and annihilation operators in quantum mechanics
  • Proficiency in mathematical techniques for integration in three dimensions
NEXT STEPS
  • Study the derivation of the Klein-Gordon equation and its implications in QFT
  • Learn about the role of the Hamiltonian in quantum mechanics and field theory
  • Explore the properties and applications of creation and annihilation operators
  • Investigate the significance of the delta function in quantum field calculations
USEFUL FOR

This discussion is beneficial for theoretical physicists, students of quantum field theory, and researchers focusing on particle physics and the mathematical foundations of quantum mechanics.

spaghetti3451
Messages
1,311
Reaction score
31
The Klein-Gordon field ##\phi(\vec{x})## and its conjugate momentum ##\pi(\vec{x})## is given, in the Schrödinger picture, by

##\phi(\vec{x})=\int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{\sqrt{2\omega_{\vec{p}}}}[a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}+a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}}]##
##\pi(\vec{x})=\int \frac{d^{3}p}{(2\pi)^{3}} (-i)\sqrt{\frac{\omega_{\vec{p}}}{2}}[a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}-a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}}]##

I would like to show that the Hamiltonian ##H## of the Klein-Gordon theory is given by

##H = \int \frac{d^{3}p}{(2\pi)^{3}}\omega_{\vec{p}}[a_{\vec{p}}^{\dagger}a_{\vec{p}}+\frac{1}{2}(2\pi)^{3}\delta^{(3)}(0)]##.

Here's my attempt:

##H=\frac{1}{2}\int d^{3}x [\pi^{2}+(\nabla\phi)^{2}+m^{2}\phi^{2}]##

##=\frac{1}{2}\int \frac{d^{3}x\ d^{3}p\ d^{3}q}{(2\pi)^{6}}\Big[ -\frac{\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}{2} \Big( a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}-a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}} \Big) \Big( a_{\vec{q}}e^{i\vec{q}\cdot{\vec{x}}}-a_{\vec{q}}^{\dagger}e^{-i\vec{q}\cdot{\vec{x}}} \Big)##
##+ \frac{1}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}} \Big( i\vec{p}a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}-i\vec{p}a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}} \Big)\cdot{\Big( i\vec{q}a_{\vec{q}}e^{i\vec{q}\cdot{\vec{x}}}-i\vec{q}a_{\vec{q}}^{\dagger}e^{-i\vec{q}\cdot{\vec{x}}} \Big)}+ \frac{m^{2}}{2\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}} \Big( a_{\vec{p}}e^{i\vec{p}\cdot{\vec{x}}}+a_{\vec{p}}^{\dagger}e^{-i\vec{p}\cdot{\vec{x}}} \Big)\Big(a_{\vec{q}}e^{i\vec{q}\cdot{\vec{x}}}+a_{\vec{q}}^{\dagger}e^{-i\vec{q}\cdot{\vec{x}}} \Big)\Big]##

##=\frac{1}{4}\int \frac{d^{3}p\ d^{3}q}{(2\pi)^{3}}\Big[-\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}\Big(a_{\vec{p}}a_{\vec{q}}\delta(\vec{p}+\vec{q})-a_{\vec{p}}^{\dagger}a_{\vec{q}}\delta(-\vec{p}+\vec{q})-a_{\vec{p}}a_{\vec{q}}^{\dagger}\delta(\vec{p}-\vec{q})+a_{\vec{p}}^{\dagger}a_{\vec{q}}^{\dagger}\delta(-\vec{p}-\vec{q})\Big)+\frac{1}{\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big(-\vec{p}\cdot{\vec{q}}a_{\vec{p}}a_{\vec{q}}\delta(\vec{p}+\vec{q})+\vec{p}\cdot{\vec{q}}a_{\vec{p}}^{\dagger}a_{\vec{q}}\delta(-\vec{p}+\vec{q})+\vec{p}\cdot{\vec{q}}a_{\vec{p}}a_{\vec{q}}^{\dagger}\delta(\vec{p}-\vec{q})-\vec{p}\cdot{\vec{q}}a_{\vec{p}}^{\dagger}a_{\vec{q}}^{\dagger}\delta(-\vec{p}-\vec{q})\Big)+\frac{m^{2}}{\sqrt{\omega_{\vec{p}}\omega_{\vec{q}}}}\Big(a_{\vec{p}}a_{\vec{q}}\delta(\vec{p}+\vec{q})+a_{\vec{p}}^{\dagger}a_{\vec{q}}\delta(-\vec{p}+\vec{q})+a_{\vec{p}}a_{\vec{q}}^{\dagger}\delta(\vec{p}-\vec{q})+a_{\vec{p}}^{\dagger}a_{\vec{q}}^{\dagger}\delta(-\vec{p}-\vec{q})\Big)\Big]##

##=\frac{1}{4}\int \frac{d^{3}p}{(2\pi)^{3}}\Big[- \omega_{\vec{p}} a_{\vec{p}} a_{-\vec{p}} +
\omega_{\vec{p}} a_{\vec{p}}^{\dagger} a_{\vec{p}} +
\omega_{\vec{p}} a_{\vec{p}} a_{\vec{p}}^{\dagger} - \omega_{\vec{p}} a_{\vec{p}}^{\dagger}
a_{-\vec{p}}^{\dagger} + \frac{1}{\omega_{\vec{p}}} \vec{p}^{2} a_{\vec{p}} a_{-\vec{p}} + \frac{1}{\omega_{\vec{p}}} \vec{p}^{2} a_{\vec{p}}^{\dagger} a_{\vec{p}} + \frac{1}{\omega_{\vec{p}}}
\vec{p}^{2} a_{\vec{p}} a_{\vec{p}}^{\dagger} + \frac{1}{\omega_{\vec{p}}} \vec{p}^{2}
a_{\vec{p}}^{\dagger} a_{-\vec{p}}^{\dagger} + \frac{m^{2}}{\omega_{\vec{p}}} a_{\vec{p}} a_{-\vec{p}} +
\frac{m^{2}}{\omega_{\vec{p}}} a_{\vec{p}}^{\dagger} a_{\vec{p}} + \frac{m^{2}}{\omega_{\vec{p}}} a_{\vec{p}} a_{\vec{p}}^{\dagger} + \frac{m^{2}}{\omega_{\vec{p}}} a_{\vec{p}}^{\dagger} a_{-\vec{p}}^{\dagger}\Big]##

##=\frac{1}{4}\int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{\omega_{\vec{p}}}\Big[(-\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})a_{\vec{p}}a_{-\vec{p}}+(-\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})a_{\vec{p}}^{\dagger}a_{-\vec{p}}^{\dagger}+(\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})a_{\vec{p}}a_{\vec{p}}^{\dagger}+(\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})a_{\vec{p}}^{\dagger}a_{\vec{p}}\Big]##

##=\frac{1}{4}\int \frac{d^{3}p}{(2\pi)^{3}}\frac{1}{\omega_{\vec{p}}}\Big[(-\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})(a_{\vec{p}}a_{-\vec{p}}+a_{\vec{p}}^{\dagger}a_{-\vec{p}}^{\dagger})+(\omega_{\vec{p}}^{2}+\vec{p}^{2}+m^{2})(a_{\vec{p}}a_{\vec{p}}^{\dagger}+a_{\vec{p}}^{\dagger}a_{\vec{p}})\Big]##

##=\frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}}\omega_{\vec{p}}[a_{\vec{p}}a_{\vec{p}}^{\dagger}+a_{\vec{p}}^{\dagger}a_{\vec{p}}]##, where we used ##\omega_{\vec{p}}^{2}=\vec{p}^{2}+m^{2}## to eliminate the first term and simplify the second term

##=\frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}}\omega_{\vec{p}}[[a_{\vec{p}},a_{\vec{p}}^{\dagger}]+a_{\vec{p}}^{\dagger}a_{\vec{p}}+a_{\vec{p}}^{\dagger}a_{\vec{p}}]##

##=\int \frac{d^{3}p}{(2\pi)^{3}}\omega_{\vec{p}}[a_{\vec{p}}^{\dagger}a_{\vec{p}}+\frac{1}{2}[a_{\vec{p}},a_{\vec{p}}^{\dagger}]]##

##=\int \frac{d^{3}p}{(2\pi)^{3}}\omega_{\vec{p}}[a_{\vec{p}}^{\dagger}a_{\vec{p}}+\frac{1}{2}(2\pi)^{3}\delta^{(3)}(0)]##

Is my working correct?
 
  • Like
Likes   Reactions: DuckAmuck
It's correct.

You should be more self-confident about your mathematical skills. :smile:
 
Last edited:
Demystifier said:
It's correct.

Thanks!

Demystifier said:
You should be more self-confident about your mathematical skills. :smile:

I am still very new to the kind of calculations which form the bread and butter of QFT and GR, and so I write such prosaic and detailed answers just to confirm with others that I don't have the occasional flawed conceptual understanding of how to do the calculations.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
897
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K