What is Klein-gordon: Definition and 90 Discussions
The Klein–Gordon equation (Klein–Fock–Gordon equation or sometimes Klein–Gordon–Fock equation) is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation. Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction (with unknown interaction term in the Hamiltonian,) the practical utility is limited.
The equation can be put into the form of a Schrödinger equation. In this form it is expressed as two coupled differential equations, each of first order in time. The solutions have two components, reflecting the charge degree of freedom in relativity. It admits a conserved quantity, but this is not positive definite. The wave function cannot therefore be interpreted as a probability amplitude. The conserved quantity is instead interpreted as electric charge, and the norm squared of the wave function is interpreted as a charge density. The equation describes all spinless particles with positive, negative, and zero charge.
Any solution of the free Dirac equation is, for each of its four components, a solution of the free Klein–Gordon equation. The Klein–Gordon equation does not form the basis of a consistent quantum relativistic one-particle theory. There is no known such theory for particles of any spin. For full reconciliation of quantum mechanics with special relativity, quantum field theory is needed, in which the Klein–Gordon equation reemerges as the equation obeyed by the components of all free quantum fields. In quantum field theory, the solutions of the free (noninteracting) versions of the original equations still play a role. They are needed to build the Hilbert space (Fock space) and to express quantum fields by using complete sets (spanning sets of Hilbert space) of wave functions.
I've tried this problem so, so, so so so many times. Given the equations above, the proof starts easily enough:
$$\partial_\mu T^{\mu\nu}=\partial_\mu (∂^μ ϕ∂^ν ϕ)-\eta^{\mu\nu}\partial_\mu[\frac{1}{2}∂^2ϕ−\frac{1}{2}m^2ϕ^2]$$
apply product rule to all terms
$$=\partial^\nu \phi \cdot...
Take the Klein-Gordon equation:
##\Box^2 = m^2##
Say we want to linearize this equation, we try to come up with a new operator that squares into ##\Box^2##.
##(A\partial_t - B\partial_x - C\partial_y - D\partial_z)^2 = \Box^2##
So we need ##-A^2=B^2=C^2=D^2=I## as this gives back the 2nd...
Hi, there. I am reading An Introduction to Quantum Field Theory by Peskin and Schroeder. I am confused about some equations in section 2.4 The Klein-Gordon Field in Space-Time. It computes the Heisenberg equations of ##\phi \left ( x \right )## and ##\pi \left ( x \right)## as (in page 25)
##...
First, let me introduce the notation; given a Hamiltonian ##H## and a momentum operator ##\vec{P}##, and writing ##P=(H,\vec{P})##. Let ##|\Omega\rangle## be the ground state of ##H##, ##|\lambda_\vec{0}\rangle## an eigenstate of ##H## with momentum 0, i.e. ##\vec{P}|\lambda_\vec{0}\rangle=0##...
The Schrödinger equation can be derived from the path integral quantization of the Lagrangian of classical, non-relativistic particles.
Can the Klein-Gordon (and maybe the Dirac) equation be derived from the path integral quantization of a given classical (supposedly relativistic) Lagrangian of...
Dirac wanted to fix the problems with the Klein-Gordon equation by seeking a new solution to it.
He wanted a relativistic solution so it makes sense that the solution needed to satisfy Einstein's energy-momentum relation.
But why did it need to be of first order in time- and...
Homework Statement
Show that the coherent state ##|c\rangle=exp(\int \frac{d^3p}{(2\pi)^3}c(\vec{p})a^{\dagger}_{\vec{p}})|0\rangle## is an eigenstate of the anhiquilation operator ##a_{\vec{p}}##. Express it in terms of the states of type ##|\vec{p}_1...\vec{p}_N\rangle##
Homework Equations...
Hello! I am a bit confused about the KG equation in the context of QFT. In QM, the KG equations describes the evolution of a wavefunction, ##\phi(x,t)##, in space and time (I will assume we have no potential). This function gives the probability of finding a particle described by this...
I'm self-studying QFT and attempting exercise 2.2 on Peskin & Schroeder. First off, I'm a bit confused on the logic the authors use in the quantization process. They first expand the fields in terms of these ##a_{\vec{p}},a_{\vec{p}}^\dagger## operators which, if I understand correctly, is...
I'm trying to make sense of the derivation of the Klein-Gordon propagator in Peskin and Schroeder using contour integration. It seems the main step in the argument is that ## e^{-i p^0(x^0-y^0)} ## tends to zero (in the ##r\rightarrow\infty## limit) along a semicircular contour below (resp...
Can Lagrangian densities be constructed from the physics and then derive equations of motion from them? As it seems now, from my reading and a course I took, that the equations of motion are known (i.e. the Klein-Gordon and Dirac Equation) and then from them the Lagrangian density can be...
I was reading about the classical Klein-Gordon propagator here: https://en.wikipedia.org/wiki/Propagator#Relativistic_propagators
Basically they are looking for ##G##, that solves the equation
$$(\square _{x}+m^{2})G(x,y)=-\delta (x-y).$$
So they take the Fourier transform to get...
Suppose I have a self interacting real scalar field ##\phi## with equation of motion
##\partial^i \partial_i \phi + m^2 \phi = -A \phi^2 - B\phi^3##,
and I attempt to find constant solutions ##\phi (x,t) = C## for it. The trivial solution is the zero solution ##\phi (x,t) = 0##, but there can...
Hello! I am reading Peskin's book on QFT and in the first chapter (pg. 30) he introduces this: ##<0|[\phi(x),\phi(y)]|0> = \int\frac{d^3p}{(2\pi)^3}\int\frac{dp^0}{2\pi i}\frac{-1}{p^2-m^2}e^{-ip(x-y)}## and then he spends 2 pages explaining the importance of choosing the right contour integral...
Hello! So in the Klein-Gordon equation you have a field ##\phi## which becomes an operator in QFT and when you apply it on the vacuum state ##|0>## you get a particle at position x: ##\hat{\phi}(x)|0>=|x>##. So if you look at this particle (in a non interaction theory) the wave function of this...
Suppose one starts with the standard Klein-Gordon (KG) Lagrangian for a free scalar field: $$\mathcal{L}=\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-\frac{1}{2}m^{2}\phi^{2}$$ Integrating by parts one can obtain an equivalent (i.e. gives the same equations of motion) Lagrangian...
Hello! I am reading Peskin's book on QFT and in chapter one he shows that ##[\phi(x), \phi(y)] = D(x-y) - D(y-x)##, with ##D(x-y)## being the propagator from ##x## to ##y##. He says that if ##(x-y)^2<0## we can do a Lorentz transformation such that ##(x-y) \to -(x-y)## and hence the commutator...
Consider the double-slit experiment done with photons from a laser. If one was interested only in computing position (vertical) probability amplitudes and did not care about spin/helicity, could the Klein-Gordon Equation (with mass set to zero) be used?
Thanks in advance.
I'm currently studying Quantum Field Theory and I have a confusion about some mathematics in page 30 of Mandl's Quantum Field Theory (Wiley 2010).
Here is a screenshot of the relevant part: https://www.dropbox.com/s/fsjnb3kmvmgc9p2/Screenshot%202017-01-24%2018.10.10.png?dl=0
My issue is in...
Homework Statement
I need to gauge the symmetry:
\phi \rightarrow \phi + a(x)
for the Lagrangian:
L=\partial_\mu\phi\partial^\mu\phi
Homework EquationsThe Attempt at a Solution
We did this in class for the Dirac equation with a phase transformation and I understood the method, but...
Suppose φ is solution to Klein-Gordon equation, Multiplying it by -iφ* we get
iφ^*\frac{\partial^2φ}{\partial t^2}-iφ^*∇^2φ+iφ^*m^2=0 .....(5)
Taking the complex conjugate of the Klein-Gordon equation and multiplying by -iφ we get
iφ\frac{\partial^2φ^*}{\partial t^2}-iφ∇^2φ^*+iφm^2=0].....(6)...
Is it possible to approximately calculate the dynamics of a "phi-fourth" interacting Klein-Gordon field by using a
finite dimensional Hilbert state space where the possible values of momentum are limited to a discrete set
##-p_{max},-\frac{N-1}{N}p_{max},-\frac{N-2}{N}p_{max}...
The solutions to the Dirac equation are also solutions of the Klein-Gordon equation, which is the equation of motion for the real scalar field. I can see that the converse is not true, but why do spinors follow the equation for real-field particles? Is there any physical meaning to it?
The Klein-Gordon field ##\phi(\vec{x})## and its conjugate momentum ##\pi(\vec{x})## is given, in the Schrodinger picture, by
##\phi(\vec{x})=\int \frac{d^{3}p}{(2\pi)^{3}}...
Homework Statement
The energy-momentum tensor ##T^{\mu\nu}## of the Klein-Gordon Lagrangian ##\mathcal{L}_{KG} = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-\frac{1}{2}m^{2}\phi^{2}## is given by
$$T^{\mu\nu}~=~\partial^{\mu}\phi\partial^{\nu}\phi-\eta^{\mu\nu}\mathcal{L}_{KG}.$$
Show...
I would like to prove the Lorentz invariance of the Klein-Gordon equation by proving the invariance of the action ##\mathcal{S} = \int d^{4}x\ \mathcal{L}_{KG}## under a Lorentz tranformation.
I would like to do this by first proving the Lorentz invariance of the ##\mathcal{L}_{KG}## and then...
Homework Statement
1. Show directly that if ##\varphi(x)## satisfies the Klein-Gordon equation, then ##\varphi(\Lambda^{-1}x)## also satisfies this equation for any Lorentz transformation ##\Lambda##.
2. Show that ##\mathcal{L}_{Maxwell}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}## is invariant under...
I understand that the ansatz to $$(\Box +m^{2})\phi(\mathbf{x},t)=0$$ (where ##\Box\equiv\partial^{\mu}\partial_{\mu}=\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}##) is of the form ##\phi(\mathbf{x},t)=e^{(iE_{\mathbf{k}}t-\mathbf{k}\cdot\mathbf{x})}##, where...
The classical Klein-Gordon equation is ##(\partial^{2}+m^{2})\varphi(t,\vec{x})=0##.
To solve this equation, we need to Fourier transform ##\varphi(t,\vec{x})## with respect to its space coordinates to obtain
##\varphi(t,\vec{x}) = \int...
Homework Statement
Consider the quantum mechanical Hamiltonian ##H##. Using the commutation relations of the fields and conjugate momenta , show that if ##F## is a polynomial of the fields##\Phi## and ##\Pi## then
##[H,F]-i \partial_0 F##
Homework Equations
For KG we have:
##H=\frac{1}{2} \int...
Hi All,
I've heard it said that the superluminal phase velocity of the KG eqn is not a problem for relativistic causality because signals travel at the packet/group velocity, which is the inverse of the phase velocity (c being 1). I'm a bit skeptical of this.
We can strip away all the quantum...
Homework Statement
I was just studying the Klein Gordon equation with fields. In particular I was reviewing the continuity equation. In the derivation for it, the usual approach is to take the klein-gordon equation (I'm using 4-vector covariant notation), multuply by the complex conjugate of...
Homework Statement
Hey guys!
So this question should be simple apparently but I got no idea how to do it. Basically I have the following Lagrangian density
\mathcal{L}=\frac{1}{2}(\partial_{\mu}\phi)(\partial^{\mu}\phi)-\frac{m}{2}\phi^{2}
which should be invariant under Lorentz...
Homework Statement
Hey guys,
So here's the problem I'm faced with. I have to show that
(\Box + m^{2})<|T(\phi(x)\phi^{\dagger}(y))|>=-i\delta^{(4)}(x-y) ,
by acting with the quabla (\Box) operator on the following...
Homework Statement
Hey guys,
So I have to show the following:
[P^{\mu} , \phi(x)]=-i\partial^{\mu}\phi(x),
where
\phi(x)=\int \frac{d^{3}k}{(2\pi)^{3}2\omega(\vec{k})} \left[ a(\vec{k})e^{-ik\cdot x}+b^{\dagger}(\vec{k})e^{ik\cdot x} \right]
and
P^{\mu}=\int...
I want to prove the invariance of the Klein-Gordon Lagrangian \mathcal{L}=\frac 1 2 \partial^\mu \phi \partial_\mu \phi-\frac 1 2 m^2 \phi^2 under a general Lorentz transformation \Lambda^\alpha_\beta but I don't know what should I do. I don't know how to handle it. How should I do it?
Thanks
Homework Statement
a+(k) creates particle with wave number vector k, a(k) annihilates the same; then the Klein-Gordon field operators are defined as ψ+(x) = ∑_k f(k) a(k) e^-ikx and ψ-(x) = ∑_k f(k) a+(k) e^ikx; the factor f contains constants and the ω(k). x is a Lorentz four vector, k is a...
Definition/Summary
In this library item, some properties and interpretations of the Klein-Gordon equation (KG) will be covered. We will first focus on its usage in Relativistic Quantum Mechanics (RQM) and then examine it in Quantum Field Theory (QFT).
The Klein-Gordon equation is...
In page 30 of book "An introduction to quantum field theory" by Peskin and Schroeder in the derivation of Klein-Gordon propagator, why p^0=-E_p in the second step in equation (2.54). and why change "ip(x-y)" to "-ip(x-y)"? I thought a lot time, but get no idea. Thank you for your giving me an...
Again, from the Peskin and Schroeder's book, I can't quite see how this computation goes:
See file attached
The thing I don't get is how the term with (\partial^{2}+m^{2})\langle 0| [\phi(x),\phi(y)] | 0 \rangle vanishes, and also why they only get a \langle 0 | [\pi(x),\phi(y)] | 0 \rangle...
Hello, I'm looking at the following computation from the Peskin and Schroeder's book:
See file attached
In the second page, the second term that's being integrated, I don't understand why it has a negative i in the exponential, that'll keep the energy term the same, but will swap the sign...
Hi, I hope I put this in the right place!
I'm having trouble with some of the calculus in moving from the Klein-Gordin Lagrangian density to the equations of motion. The density is:
L = \frac{1}{2}\left[ (\partial_μ\phi)(\partial^\mu \phi) - m^2\phi ^2 \right]
Now, to apply the...
Homework Statement
Show that ψ(x,t)=Ae^{i(kt-ωt)} is a solution to the Klein-Gordon equation \frac{∂
^2ψ(x,t)}{∂x^2}-\frac{1}{c^2}\frac{∂^2ψ(x,t)}{∂t^2}-\frac{m^2c^2}{\hbar^2}ψ(x,t)=0 if ω=\sqrt{k^2c^2+(m^2c^4/\hbar^2)} Determine the group velocity of a wave packet made up of waves satisfying...
Hey,
My question is on the Dirac equation, I am having a little confusion with the steps that have been taken to get from this form of the Dirac equation:
i\frac{\partial \psi}{\partial t}=(-i\underline{\alpha}\cdot \underline{\nabla}+\beta m)\psi
to
-\frac{\partial^2 \psi}{\partial...
Comparing the Klein-Gordon equation to the equation of motion for a classical harmonic oscillator, I notice that for a particle of mass m,
\frac {mc^2}{\hbar}
is a frequency.
Does this frequency have a physical meaning?
Hello,
My question is on the Klein-Gordon equation and it's relation to the continuity equation, so for a Klein-Gordon equation & continuity equation of the following form, I have attained the following probability density and probability current relations (although not normalised correctly...
Hello,
My question concerns the Klein-Gordon Equation under some potential of the form (and refers to a higgs-like interaction, i assume as that's what we're researching):
\delta V= \lambda \Psi^{*}\Psi
For substitution into the Klein-Gordon equation:
(\frac{\partial^2 }{\partial...
I'm trying to derive the x-space result for the Green's function for the Klein-Gordon equation, but my complex analysis skills seems to be insufficient. The result should be:
\begin{eqnarray}
G_F(x,x') = \lim_{\epsilon \rightarrow 0} \frac{1}{(2 \pi)^4} \int...
Hi all,
I'm hoping this will be a quickly solved question. In Peskin and Schroeder (2.66), when dealing with source terms in the Klein-Gordon equation, ##(\partial^2+m^2)\phi(x) = j(x)##, they have
$$\int d N =\int \frac{d^3 p}{(2\pi)^3}\frac{1}{2E_p}|\tilde{j}(p)|^2\quad...