Undergrad Hamilton’s principle maximises potential energy?

Click For Summary
Hamilton's principle minimizes the difference between kinetic energy and potential energy, effectively maximizing potential energy when kinetic energy is fixed. In scenarios where kinetic energy or mass is negligible, the Lagrangian simplifies to the negative of potential energy. The discussion references Feynman's explanation in his lectures, particularly around Fig 19-6, to illustrate these concepts. The limit of kinetic energy approaching zero raises questions about the meaningfulness of maximizing potential energy in this context. Ultimately, the focus remains on finding the path where the integral of kinetic and potential energy is extreme.
sentai
Messages
3
Reaction score
1
Hamilton’s principle minimises kinetic energy minus potential energy, that is, with a fixed kinetic energy, Hamilton's principle maximises potential energy. What if we consider the limit that the kinetic energy or the mass/the inertia can be ignored then the lagrangian is solely the negative of potential energy. How to understand the potential energy needs to be maximised?
 
Physics news on Phys.org
Sorry, Fig 19-6 and its around explains it.
 
  • Like
Likes Delta2 and sentai
anuttarasammyak said:
Sorry, Fig 19-6 and its around explains it.
Thanks for pointing it out. Then how should we understand the limit of KE->0, then min(L)=-max(PE)?
 
As Feynman stated we are looking for the path KE-PE integral on which should be extreme.
KE=0 takes place at the top of trajectory in Fig 19-6 but I do not think considering such "limit of KE->0" is meaningful.
 
I built a device designed to brake angular velocity which seems to work based on below, i used a flexible shaft that could bow up and down so i could visually see what was happening for the prototypes. If you spin two wheels in opposite directions each with a magnitude of angular momentum L on a rigid shaft (equal magnitude opposite directions), then rotate the shaft at 90 degrees to the momentum vectors at constant angular velocity omega, then the resulting torques oppose each other...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
608
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
969