MHB Harrison's question via Facebook about polar functions

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Functions Polar
AI Thread Summary
The discussion revolves around proving that the angle $\alpha$ satisfies the equation $\frac{2\pi^2}{3} = \alpha^2[1 + \cos(\frac{\alpha}{2})]$ based on two polar functions. The points $(\rho, \alpha)$ and $(\rho, \beta)$ are defined on the curves $r = \frac{3\theta}{2}$ and $r = \theta + \pi$, respectively, with equal distances from the origin. The relationship between $\alpha$ and $\beta$ is established as $\beta = \frac{3\alpha}{2} - \pi$. Using the distance formula for polar coordinates, the equation simplifies to show the required condition for $\alpha$. The proof concludes with the derived equation confirming the relationship.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
The point $\displaystyle \begin{align*} \left( \rho , \alpha \right) \end{align*}$ lies on the curve $\displaystyle \begin{align*} r = \frac{3\,\theta}{2} \end{align*}$ and the point $\displaystyle \begin{align*} \left( \rho , \beta \right) \end{align*}$ lies on the curve $\displaystyle \begin{align*} r = \theta + \pi \end{align*}$, such that the points are the same distance from the origin, $\displaystyle \begin{align*} 0\leq \theta \leq \pi \end{align*}$ and the distance between them is $\displaystyle \begin{align*} \sqrt{3}\,\pi \end{align*}$. Show that $\displaystyle \begin{align*} \alpha \end{align*}$ satisfies $\displaystyle \begin{align*} \frac{2\,\pi^2}{3} = \alpha ^2 \,\left[ 1 + \cos{ \left( \frac{\alpha}{2} \right) } \right] \end{align*}$

Since the distances from the origin $\displaystyle \begin{align*} \rho \end{align*}$ are the same, we can say $\displaystyle \begin{align*} \rho = \frac{3\,\alpha}{2} \end{align*}$ and $\displaystyle \begin{align*} \rho = \beta + \pi \end{align*}$, giving

$\displaystyle \begin{align*} \frac{3\,\alpha}{2} &= \beta + \pi \\ \beta &= \frac{3\,\alpha}{2} - \pi \end{align*}$

The distance between two points in polar form $\displaystyle \begin{align*} \left( r_1 , \theta_1 \right) \end{align*}$ and $\displaystyle \begin{align*} \left( r_2, \theta_2 \right) \end{align*}$ is given by $\displaystyle \begin{align*} d = \sqrt{r_1^2 + r_2^2 - 2\,r_1\,r_2\,\cos{ \left( \theta_1 - \theta_2 \right) }} \end{align*}$, so in this case

$\displaystyle \begin{align*} \sqrt{3}\,\pi &= \sqrt{ \rho^2 + \rho^2 - 2\,\rho^2 \,\cos{ \left( \alpha - \beta \right) } } \\ \sqrt{3}\,\pi &= \sqrt{ 2\,\rho^2 \,\left[ 1 - \cos{ \left( \alpha - \beta \right) } \right] } \\ 3\,\pi^2 &= 2\,\rho ^2 \,\left[ 1 - \cos{ \left( \alpha - \beta \right) } \right] \\ 3\,\pi^2 &= 2\,\left( \frac{3\,\alpha}{2} \right) ^2 \,\left\{ 1 - \cos{ \left[ \alpha - \left( \frac{3\,\alpha}{2} - \pi \right) \right] } \right\} \\ 3\,\pi^2 &= \frac{9\,\alpha^2}{2} \,\left[ 1 - \cos{\left( \pi - \frac{\alpha}{2} \right) } \right] \\ \frac{2\,\pi^2}{3} &= \alpha^2 \,\left[ 1 - \cos{\left( \pi - \frac{\alpha}{2} \right) } \right] \\ \frac{2\,\pi^2}{3} &= \alpha^2\,\left[ 1 + \cos{ \left( \frac{\alpha}{2} \right) } \right] \end{align*}$
 
Mathematics news on Phys.org
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
6K
Replies
1
Views
11K
Replies
4
Views
11K
Replies
4
Views
11K
Replies
1
Views
2K
Replies
2
Views
10K
Back
Top