MHB Harrison's question via Facebook about polar functions

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Functions Polar
Click For Summary
SUMMARY

The discussion centers on the polar functions defined by the equations \( r = \frac{3\theta}{2} \) and \( r = \theta + \pi \). It establishes that the points \( (\rho, \alpha) \) and \( (\rho, \beta) \) are equidistant from the origin, leading to the relationship \( \beta = \frac{3\alpha}{2} - \pi \). The distance between these points is calculated to be \( \sqrt{3}\pi \), resulting in the derived equation \( \frac{2\pi^2}{3} = \alpha^2 \left[ 1 + \cos\left( \frac{\alpha}{2} \right) \right] \), confirming the relationship between \( \alpha \) and the cosine function.

PREREQUISITES
  • Understanding of polar coordinates and polar equations
  • Knowledge of trigonometric identities, particularly cosine
  • Familiarity with distance formulas in polar coordinates
  • Basic algebraic manipulation skills
NEXT STEPS
  • Explore the derivation of polar coordinate distance formulas
  • Study trigonometric identities and their applications in polar equations
  • Investigate the properties of polar curves and their intersections
  • Learn about the applications of polar functions in real-world scenarios
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced geometry or polar coordinate systems will benefit from this discussion.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
The point $\displaystyle \begin{align*} \left( \rho , \alpha \right) \end{align*}$ lies on the curve $\displaystyle \begin{align*} r = \frac{3\,\theta}{2} \end{align*}$ and the point $\displaystyle \begin{align*} \left( \rho , \beta \right) \end{align*}$ lies on the curve $\displaystyle \begin{align*} r = \theta + \pi \end{align*}$, such that the points are the same distance from the origin, $\displaystyle \begin{align*} 0\leq \theta \leq \pi \end{align*}$ and the distance between them is $\displaystyle \begin{align*} \sqrt{3}\,\pi \end{align*}$. Show that $\displaystyle \begin{align*} \alpha \end{align*}$ satisfies $\displaystyle \begin{align*} \frac{2\,\pi^2}{3} = \alpha ^2 \,\left[ 1 + \cos{ \left( \frac{\alpha}{2} \right) } \right] \end{align*}$

Since the distances from the origin $\displaystyle \begin{align*} \rho \end{align*}$ are the same, we can say $\displaystyle \begin{align*} \rho = \frac{3\,\alpha}{2} \end{align*}$ and $\displaystyle \begin{align*} \rho = \beta + \pi \end{align*}$, giving

$\displaystyle \begin{align*} \frac{3\,\alpha}{2} &= \beta + \pi \\ \beta &= \frac{3\,\alpha}{2} - \pi \end{align*}$

The distance between two points in polar form $\displaystyle \begin{align*} \left( r_1 , \theta_1 \right) \end{align*}$ and $\displaystyle \begin{align*} \left( r_2, \theta_2 \right) \end{align*}$ is given by $\displaystyle \begin{align*} d = \sqrt{r_1^2 + r_2^2 - 2\,r_1\,r_2\,\cos{ \left( \theta_1 - \theta_2 \right) }} \end{align*}$, so in this case

$\displaystyle \begin{align*} \sqrt{3}\,\pi &= \sqrt{ \rho^2 + \rho^2 - 2\,\rho^2 \,\cos{ \left( \alpha - \beta \right) } } \\ \sqrt{3}\,\pi &= \sqrt{ 2\,\rho^2 \,\left[ 1 - \cos{ \left( \alpha - \beta \right) } \right] } \\ 3\,\pi^2 &= 2\,\rho ^2 \,\left[ 1 - \cos{ \left( \alpha - \beta \right) } \right] \\ 3\,\pi^2 &= 2\,\left( \frac{3\,\alpha}{2} \right) ^2 \,\left\{ 1 - \cos{ \left[ \alpha - \left( \frac{3\,\alpha}{2} - \pi \right) \right] } \right\} \\ 3\,\pi^2 &= \frac{9\,\alpha^2}{2} \,\left[ 1 - \cos{\left( \pi - \frac{\alpha}{2} \right) } \right] \\ \frac{2\,\pi^2}{3} &= \alpha^2 \,\left[ 1 - \cos{\left( \pi - \frac{\alpha}{2} \right) } \right] \\ \frac{2\,\pi^2}{3} &= \alpha^2\,\left[ 1 + \cos{ \left( \frac{\alpha}{2} \right) } \right] \end{align*}$
 
Physics news on Phys.org

Similar threads

  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K