MHB Harrison's question via Facebook about polar functions

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Functions Polar
AI Thread Summary
The discussion revolves around proving that the angle $\alpha$ satisfies the equation $\frac{2\pi^2}{3} = \alpha^2[1 + \cos(\frac{\alpha}{2})]$ based on two polar functions. The points $(\rho, \alpha)$ and $(\rho, \beta)$ are defined on the curves $r = \frac{3\theta}{2}$ and $r = \theta + \pi$, respectively, with equal distances from the origin. The relationship between $\alpha$ and $\beta$ is established as $\beta = \frac{3\alpha}{2} - \pi$. Using the distance formula for polar coordinates, the equation simplifies to show the required condition for $\alpha$. The proof concludes with the derived equation confirming the relationship.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
The point $\displaystyle \begin{align*} \left( \rho , \alpha \right) \end{align*}$ lies on the curve $\displaystyle \begin{align*} r = \frac{3\,\theta}{2} \end{align*}$ and the point $\displaystyle \begin{align*} \left( \rho , \beta \right) \end{align*}$ lies on the curve $\displaystyle \begin{align*} r = \theta + \pi \end{align*}$, such that the points are the same distance from the origin, $\displaystyle \begin{align*} 0\leq \theta \leq \pi \end{align*}$ and the distance between them is $\displaystyle \begin{align*} \sqrt{3}\,\pi \end{align*}$. Show that $\displaystyle \begin{align*} \alpha \end{align*}$ satisfies $\displaystyle \begin{align*} \frac{2\,\pi^2}{3} = \alpha ^2 \,\left[ 1 + \cos{ \left( \frac{\alpha}{2} \right) } \right] \end{align*}$

Since the distances from the origin $\displaystyle \begin{align*} \rho \end{align*}$ are the same, we can say $\displaystyle \begin{align*} \rho = \frac{3\,\alpha}{2} \end{align*}$ and $\displaystyle \begin{align*} \rho = \beta + \pi \end{align*}$, giving

$\displaystyle \begin{align*} \frac{3\,\alpha}{2} &= \beta + \pi \\ \beta &= \frac{3\,\alpha}{2} - \pi \end{align*}$

The distance between two points in polar form $\displaystyle \begin{align*} \left( r_1 , \theta_1 \right) \end{align*}$ and $\displaystyle \begin{align*} \left( r_2, \theta_2 \right) \end{align*}$ is given by $\displaystyle \begin{align*} d = \sqrt{r_1^2 + r_2^2 - 2\,r_1\,r_2\,\cos{ \left( \theta_1 - \theta_2 \right) }} \end{align*}$, so in this case

$\displaystyle \begin{align*} \sqrt{3}\,\pi &= \sqrt{ \rho^2 + \rho^2 - 2\,\rho^2 \,\cos{ \left( \alpha - \beta \right) } } \\ \sqrt{3}\,\pi &= \sqrt{ 2\,\rho^2 \,\left[ 1 - \cos{ \left( \alpha - \beta \right) } \right] } \\ 3\,\pi^2 &= 2\,\rho ^2 \,\left[ 1 - \cos{ \left( \alpha - \beta \right) } \right] \\ 3\,\pi^2 &= 2\,\left( \frac{3\,\alpha}{2} \right) ^2 \,\left\{ 1 - \cos{ \left[ \alpha - \left( \frac{3\,\alpha}{2} - \pi \right) \right] } \right\} \\ 3\,\pi^2 &= \frac{9\,\alpha^2}{2} \,\left[ 1 - \cos{\left( \pi - \frac{\alpha}{2} \right) } \right] \\ \frac{2\,\pi^2}{3} &= \alpha^2 \,\left[ 1 - \cos{\left( \pi - \frac{\alpha}{2} \right) } \right] \\ \frac{2\,\pi^2}{3} &= \alpha^2\,\left[ 1 + \cos{ \left( \frac{\alpha}{2} \right) } \right] \end{align*}$
 
Mathematics news on Phys.org
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
2
Views
6K
Replies
1
Views
11K
Replies
4
Views
11K
Replies
4
Views
11K
Replies
1
Views
2K
Replies
2
Views
10K
Back
Top