MHB Harrison's question via Facebook about polar functions

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Functions Polar
Click For Summary
The discussion revolves around proving that the angle $\alpha$ satisfies the equation $\frac{2\pi^2}{3} = \alpha^2[1 + \cos(\frac{\alpha}{2})]$ based on two polar functions. The points $(\rho, \alpha)$ and $(\rho, \beta)$ are defined on the curves $r = \frac{3\theta}{2}$ and $r = \theta + \pi$, respectively, with equal distances from the origin. The relationship between $\alpha$ and $\beta$ is established as $\beta = \frac{3\alpha}{2} - \pi$. Using the distance formula for polar coordinates, the equation simplifies to show the required condition for $\alpha$. The proof concludes with the derived equation confirming the relationship.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
The point $\displaystyle \begin{align*} \left( \rho , \alpha \right) \end{align*}$ lies on the curve $\displaystyle \begin{align*} r = \frac{3\,\theta}{2} \end{align*}$ and the point $\displaystyle \begin{align*} \left( \rho , \beta \right) \end{align*}$ lies on the curve $\displaystyle \begin{align*} r = \theta + \pi \end{align*}$, such that the points are the same distance from the origin, $\displaystyle \begin{align*} 0\leq \theta \leq \pi \end{align*}$ and the distance between them is $\displaystyle \begin{align*} \sqrt{3}\,\pi \end{align*}$. Show that $\displaystyle \begin{align*} \alpha \end{align*}$ satisfies $\displaystyle \begin{align*} \frac{2\,\pi^2}{3} = \alpha ^2 \,\left[ 1 + \cos{ \left( \frac{\alpha}{2} \right) } \right] \end{align*}$

Since the distances from the origin $\displaystyle \begin{align*} \rho \end{align*}$ are the same, we can say $\displaystyle \begin{align*} \rho = \frac{3\,\alpha}{2} \end{align*}$ and $\displaystyle \begin{align*} \rho = \beta + \pi \end{align*}$, giving

$\displaystyle \begin{align*} \frac{3\,\alpha}{2} &= \beta + \pi \\ \beta &= \frac{3\,\alpha}{2} - \pi \end{align*}$

The distance between two points in polar form $\displaystyle \begin{align*} \left( r_1 , \theta_1 \right) \end{align*}$ and $\displaystyle \begin{align*} \left( r_2, \theta_2 \right) \end{align*}$ is given by $\displaystyle \begin{align*} d = \sqrt{r_1^2 + r_2^2 - 2\,r_1\,r_2\,\cos{ \left( \theta_1 - \theta_2 \right) }} \end{align*}$, so in this case

$\displaystyle \begin{align*} \sqrt{3}\,\pi &= \sqrt{ \rho^2 + \rho^2 - 2\,\rho^2 \,\cos{ \left( \alpha - \beta \right) } } \\ \sqrt{3}\,\pi &= \sqrt{ 2\,\rho^2 \,\left[ 1 - \cos{ \left( \alpha - \beta \right) } \right] } \\ 3\,\pi^2 &= 2\,\rho ^2 \,\left[ 1 - \cos{ \left( \alpha - \beta \right) } \right] \\ 3\,\pi^2 &= 2\,\left( \frac{3\,\alpha}{2} \right) ^2 \,\left\{ 1 - \cos{ \left[ \alpha - \left( \frac{3\,\alpha}{2} - \pi \right) \right] } \right\} \\ 3\,\pi^2 &= \frac{9\,\alpha^2}{2} \,\left[ 1 - \cos{\left( \pi - \frac{\alpha}{2} \right) } \right] \\ \frac{2\,\pi^2}{3} &= \alpha^2 \,\left[ 1 - \cos{\left( \pi - \frac{\alpha}{2} \right) } \right] \\ \frac{2\,\pi^2}{3} &= \alpha^2\,\left[ 1 + \cos{ \left( \frac{\alpha}{2} \right) } \right] \end{align*}$
 
Mathematics news on Phys.org
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K