MHB Hcc.18 the half life of silicon-32 is 710 years.

Click For Summary
The discussion centers on calculating the remaining amount of silicon-32 after 600 years, given its half-life of 710 years. The formula used to determine the remaining quantity is A(t) = A_0(1/2)^(t/H), where A_0 is the initial amount. Participants clarify the derivation of the decay constant k and its relationship to the half-life, confirming that A(t) can also be expressed using the exponential decay formula A(t) = A_0e^(-kt). The conversation highlights the importance of understanding both the mathematical justification and the intuitive reasoning behind the half-life concept.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
oops this is a pre calc question

$\tiny{hcc.18}$
the half life of silicon-32 is $710$ years.
If $10g$ are present now
how much will be present in 600 yrs?
to find out $k$ using
$$A=A_0 e^{kt}$$
$$\frac{1}{2}=e^{k \cdot 710}$$
$$\ln\left[\frac{1}{2}\right]=k\cdot710$$
$$\frac{\ln(1/2)}{710}=k=-0.00097626$$
I continued with this but the answer was ?
 
Last edited:
Mathematics news on Phys.org
Given that we know the half-life $H$, we may write:

$$A(t)=A_0\left(\frac{1}{2}\right)^{\frac{t}{H}}$$

Plug in the given data:

$$A(t)=10\left(\frac{1}{2}\right)^{\frac{t}{710}}$$

And so:

$$A(600)=?$$
 
Re: hcc.18 the half life of silicon-32 is \$710\$ years.

where is $e$ ??
 
Re: hcc.18 the half life of silicon-32 is \$710\$ years.

karush said:
where is $e$ ??

Between 2 and 3...hehehe.

Seriously though...we know:

$$A(t)=A_0e^{-kt}$$

And we know:

$$A(710)=\frac{1}{2}A_0=A_0e^{-710k}\implies \frac{1}{2}=e^{-710k}\implies e^{-k}=\left(\frac{1}{2}\right)^{\frac{1}{710}}$$

And so we have:

$$A(t)=A_0e^{-kt}=A_0\left(e^{-k}\right)^t=A_0\left(\frac{1}{2}\right)^{\frac{t}{710}}$$
 
ok
I was pacing the floor wondering:D

great help and insight
again from MHB😎
 
karush said:
ok
I was pacing the floor wondering:D

great help and insight
again from MHB😎

Mentally, I didn't go through all that I posted...I simply reasoned that for every 710 years the amount of substance is cut in half, which leads directly to the relation I posted. However, I felt it should be mathematically justified. (Yes)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K