MHB Hcc.18 the half life of silicon-32 is 710 years.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
oops this is a pre calc question

$\tiny{hcc.18}$
the half life of silicon-32 is $710$ years.
If $10g$ are present now
how much will be present in 600 yrs?
to find out $k$ using
$$A=A_0 e^{kt}$$
$$\frac{1}{2}=e^{k \cdot 710}$$
$$\ln\left[\frac{1}{2}\right]=k\cdot710$$
$$\frac{\ln(1/2)}{710}=k=-0.00097626$$
I continued with this but the answer was ?
 
Last edited:
Mathematics news on Phys.org
Given that we know the half-life $H$, we may write:

$$A(t)=A_0\left(\frac{1}{2}\right)^{\frac{t}{H}}$$

Plug in the given data:

$$A(t)=10\left(\frac{1}{2}\right)^{\frac{t}{710}}$$

And so:

$$A(600)=?$$
 
Re: hcc.18 the half life of silicon-32 is \$710\$ years.

where is $e$ ??
 
Re: hcc.18 the half life of silicon-32 is \$710\$ years.

karush said:
where is $e$ ??

Between 2 and 3...hehehe.

Seriously though...we know:

$$A(t)=A_0e^{-kt}$$

And we know:

$$A(710)=\frac{1}{2}A_0=A_0e^{-710k}\implies \frac{1}{2}=e^{-710k}\implies e^{-k}=\left(\frac{1}{2}\right)^{\frac{1}{710}}$$

And so we have:

$$A(t)=A_0e^{-kt}=A_0\left(e^{-k}\right)^t=A_0\left(\frac{1}{2}\right)^{\frac{t}{710}}$$
 
ok
I was pacing the floor wondering:D

great help and insight
again from MHB😎
 
karush said:
ok
I was pacing the floor wondering:D

great help and insight
again from MHB😎

Mentally, I didn't go through all that I posted...I simply reasoned that for every 710 years the amount of substance is cut in half, which leads directly to the relation I posted. However, I felt it should be mathematically justified. (Yes)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top