Heat Diffusion Equation - Using BCs to model as an orthonormal system

  • #1
physconomic
15
1
Homework Statement:
Consider heat equation
##\kappa \frac {\partial^2 \psi} {\partial x^2} = \frac{\partial \psi}{\partial t}##


## \kappa ## is positive, ## x \subset [0,a] ##, ##\psi## is real

For ##t>0##: ##\psi(t,0) = \psi_0## at ##x=0##

##\frac{\partial \psi}{\partial x}(t,a) = 0## at ##x=a##

##\psi(0,x) = 0##



We introduce ##g_k(x) = \sqrt\frac{2}{a} sin(q_k x)##

where ## q_k = \frac{\pi}{a}(k + \frac{1}{2}) ##

##k = 0, 1, ...##



b) Argue that the functions ##g_k## form an ortho-normal basis of the space ##L_b ^2 ([0, a])##, of square integrable functions ##f## on ##[0, a]## with a Dirichlet boundary condition ##f(0) = 0 ## at ## x = 0## and a von Neumann condition ##f'(a) = 0## at ##x = a##.



c) Based on the results in (a) (I've done this part - it's ##\frac{d^2}{dx^2}g_k = -q_k^2g_k##) and (b) argue that the most general ##\psi## with the correct boundary conditions can be written as ##\psi(t, x) = \psi_0+ \Sigma_0^\inf T_k(t)g_k(x)##. Find the solutions for the functions ##T_k##.



d) Fix the remaining constants in your solution by imposing the initial condition. Compute the average value ##\psi_{avg}(t)## of ##\psi(x, t)## by averaging over x ∈ [0, a] and find an approximate equation for the time as a function of## r := (\psi_0 − \psi_{avg}(t))/\psi_0##.
Relevant Equations:
Fourier series, Dirichlet, Von Neumann
I've tried to show b) by using the sine Fourier series on ##[0,2a]##, to get ##g_k = \Sigma_{n=0}^{2a} \sqrt\frac{2}{a} Sin(q_k x)##

Therefore ##\sqrt\frac{2}{a} = \frac{1}{a} \int_0^{2a} Sin(q_kx)g_k dx##

These are equal therefore it is an orthonomal basis.

I'm not sure if this is correct so it would be great if somebody could help me by checking it and also letting me know how I could go about doing parts c and d.

Thank you
 

Answers and Replies

  • #2
vanhees71
Science Advisor
Insights Author
Gold Member
2022 Award
22,078
12,973
For (b) I'd rather argue by showing that ##\mathrm{d}^2/\mathrm{d} x^2## is a self-adjoint operator on the said Hilbert space. I'm also not sure what you mean by the sum over ##n##.
 
  • Like
Likes physconomic
  • #3
physconomic
15
1
For (b) I'd rather argue by showing that ##\mathrm{d}^2/\mathrm{d} x^2## is a self-adjoint operator on the said Hilbert space. I'm also not sure what you mean by the sum over ##n##.

Thanks for your reply. Can I ask how I would do this? I meant sum over k.
 

Suggested for: Heat Diffusion Equation - Using BCs to model as an orthonormal system

Replies
0
Views
418
  • Last Post
Replies
4
Views
586
Replies
3
Views
875
Replies
18
Views
1K
Replies
5
Views
500
Replies
3
Views
2K
Top