Heat Loss from Pool: Info Reliability & Free Natural Convection

Click For Summary
SUMMARY

The discussion focuses on the reliability of heat loss calculations for indoor heated pools, specifically referencing the Engineering Toolbox website. Users highlight discrepancies between the website's values and their own calculations, particularly regarding evaporation and surface heat loss. The formula for evaporation is defined as Evap = 0.1 * Area * (PresWater - PresAir), while the pool surface heat loss is calculated using Pool surface loss = 10.5 * Area * (PoolTemp - Inside DB). The conversation also touches on the importance of accurately sizing heaters to maintain pool temperature against heat loss.

PREREQUISITES
  • Understanding of heat transfer principles, including convection and evaporation.
  • Familiarity with thermodynamic properties such as vapor pressure and temperature differentials.
  • Knowledge of pool heating systems and their operational parameters.
  • Basic proficiency in using formulas for calculating heat loss and evaporation rates.
NEXT STEPS
  • Research "Heat Loss Calculations for Swimming Pools" to understand various methodologies.
  • Learn about "Aquastat and Thermostat Settings" for optimal heater performance.
  • Explore "Newton's Law of Cooling" and its application in heat transfer scenarios.
  • Investigate "Heat Exchanger Design Principles" for efficient pool heating solutions.
USEFUL FOR

Pool engineers, HVAC professionals, and anyone involved in the design and maintenance of indoor swimming pool heating systems will benefit from this discussion.

eaboujaoudeh
Messages
152
Reaction score
0
Hi all

I found values for heat transfer from a pool on the following website:
http://www.engineeringtoolbox.com/heat-loss-open-water-tanks-d_286.html
can someone please tell me how reliable is this information?
especially that they didn't mention free natural convection, or is it negligeable in this case w.r.t radiation and evaporation.
 
Engineering news on Phys.org
A pool is closer to the temperature of the air surrounding it, unless heated. If you are looking for calculations for heat loss on an indoor heated pool, they are dependent on the natatorium conditions as well as the pool conditions. The vapor pressure of the air, as a function of its temperature and RH.

Evap = .1 * Area * (PresWater - PresAir)

Evap = Evaporated Water in Lbs per hour
Area = Area of pool surface in square feet
PresWater = Pressure of Water Surface in inches HG (for 80 deg F water) = 1.0321
PresAir = Sat Pressure Room Air in inches HG (for 76 Deg F air dewpoint) = .88
 
Last edited:
Nevermind my previous post. That is for the quantity of water loss due to evaporation. The heat loss is:

Pool surface loss = 10.5 * Area * (PoolTemp - Inside DB)

PoolTemp = The heated pool temperature
Inside DB = The pool enclosure dry bulb temperature of the air
Area = Surface area of the pool
 
thats a big difference between this value and the value given on the website ! and yes the pool is inside and heated (at least the first one)..my research is to design a heat exchanger for it.
i have another question in that matter, if i want to calculate the temperature of the pool water entering the heat exchanger(and leaving the pool to get reheated), what in ur opinion would be a good temperature to take?
 
eaboujaoudeh said:
thats a big difference between this value and the value given on the website ! and yes the pool is inside and heated (at least the first one)..my research is to design a heat exchanger for it.
i have another question in that matter, if i want to calculate the temperature of the pool water entering the heat exchanger(and leaving the pool to get reheated), what in ur opinion would be a good temperature to take?

I know there is quite a discrepency in the calculation and the website data. I don't know why. I had placed the calculation in a Qbasic program I wrote ages ago, and I can't find my reference that gave me that 10.5 figure. I found a good source for what you are searching for

http://www.engineeringtoolbox.com/swimming-pool-heating-d_878.html"

They only use 5 for their constant although they present it as a range usually of 5-7 where I got 10.5 I'll never know. The rest seems the same as what I gave you.

Determining the temperature rise through the heater depends on how fast you want to be able to heat the water. This will depend more on how much you want to invest up front in the heater, more than how much it will cost to run it. Check out the calculation in the link. I think you will find what you are searching for.

Edit: I think I made that number so high because of activity of the water. It was a combination pool and whirlpool, spray features, which increase heat loss and evaporation.
 
Last edited by a moderator:
yeah i found this website too:) thnx anyway.
what i meant in temp leaving the pool is that after steady state is reached and my pool is heated, i need to maintain that heat. so when i have to reheat the water I'm taking it that this water leaves the pool to be reheated at 23 Celsius, do u think its a fair approximation?
Thnx for everything, i appreciate it...and btw i was also wondering about that 10.5 value of yours. i found an old heat transfer book thati have, mayb i should use it, even though its more complicated then what i got from you or the website, but safetycomes first i guess:)
 
maybe they are basing calculations involving Newton's law of cooling
 
pakmingki said:
maybe they are basing calculations involving Newton's law of cooling

Well I'm not sure about that, i think they are kind of experimental cause they are measured relative to one external air temperature. Besides Newton's law of cooling doesn't allow us to measure the convection constants of air neither the radiation constants.
 
eaboujaoudeh, I'm not sure I understand your concern. Once you size your heater unit to heat the pool, maintaining that temperature will not be a problem for the heater. It should cycle based on the deadband setting of the aquastat/thermostat on the heater.

this water leaves the pool to be reheated at 23 Celsius
The surface would be about room temperature, the bottom where the water would leave the pool would be a little colder. So, yes, this seems like a reasonable temperature.
 
  • #10
yeah, but u always have to see that ur input heat compensates for the loss of heat from the surface of the pool. like if evaporation causes 10kW loss, and ur heater only compensates for 8kW..so ur water is going to become cooler gradually
 
  • #11
eaboujaoudeh said:
yeah, but u always have to see that ur input heat compensates for the loss of heat from the surface of the pool. like if evaporation causes 10kW loss, and ur heater only compensates for 8kW..so ur water is going to become cooler gradually
That is correct. If your heater can't overcome the surface loss, you will never be able to bring it up to temperature from any starting point below the desired temperature.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
12K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K
Replies
12
Views
3K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
10K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K