Heating water and air in a constant volume

Click For Summary
SUMMARY

The forum discussion centers on the simulation tool available on Wolfram Alpha for calculating the pressure of a mixture of water and air in a sealed container at constant volume. Users explore the equations used in the simulation, particularly the polynomial expression for volume changes with temperature, vol2 = (-1*^-8*T^3 + 6*^-6*T^2 - 2*^-5*T + 0.99695)*vol1. Participants also discuss methods for calculating total pressure using the ideal gas law and Antoine's equation for water pressure. The conversation highlights the importance of understanding the physical mechanisms behind the equations rather than merely using the simulation tool.

PREREQUISITES
  • Understanding of thermodynamics principles, particularly gas laws.
  • Familiarity with Antoine's equation for vapor pressure calculations.
  • Knowledge of polynomial fitting and its application in empirical data analysis.
  • Basic concepts of fluid dynamics and phase transitions in mixtures.
NEXT STEPS
  • Research the ideal gas law and its applications in real-world scenarios.
  • Study Antoine's equation and its derivation for various substances.
  • Explore polynomial regression techniques for fitting experimental data.
  • Investigate transient analysis methods for modeling dynamic systems in thermodynamics.
USEFUL FOR

Researchers, engineers, and students in thermodynamics, chemical engineering, and fluid mechanics who are interested in the behavior of gas-liquid mixtures under varying temperature and pressure conditions.

liquidFuzz
Messages
107
Reaction score
6
I found a simulation tool on wolfram alpha where the pressure of a constant volume is calculated. The pressure is affected by the heating of a mixture of water and air inside the container. There is an explanation to how the pressure is calculated which seems pretty straight forward. But there is one thing... in the beginning of the Detail section the final volume is calculated. Is this the Specific volume of water, or something else..?

The simulation tool with explanation: http://demonstrations.wolfram.com/HeatingWaterAndAirInASealedContainer/
 
Science news on Phys.org
No, it's the actual volume of water in the container.
 
Do you know how to calculate it? I can't find the equation, or more precise the constants they use in the equation in the explanation.
 
I assume they're embedded in the software. As the aim is to demonstrate the software, not enable you to do it yourself, they don't tell you.
 
Yeah maybe..?

Anyhow, I have an approximation i set yp myself that seems to be pretty close to empirical values i found on the e-net. Not fancy pancy as the wolfram alpha stuff though.
 
liquidFuzz said:
Do you know how to calculate it? I can't find the equation, or more precise the constants they use in the equation in the explanation.
What are your thoughts on how to calculate this? What physical property data do you think is needed?
 
liquidFuzz said:
I can't find the equation, or more precise the constants they use in the equation in the explanation
If you pick up the player and download the source ("author code") you can open the .nb file and see the expressions, e.g. :

vol2 = (-1*^-8*T^3 + 6*^-6*T^2 - 2*^-5*T + 0.99695)*vol1;​

Much more legible than what's in the .nb file itself:
Code:
      RowBox[{"vol2", "=", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           RowBox[{"-", "1*^-8"}], "*", 
           SuperscriptBox["T", "3"]}], "+", 
          RowBox[{"6*^-6", "*", 
           SuperscriptBox["T", "2"]}], "-", 
          RowBox[{"2*^-5", "*", "T"}], "+", "0.99695"}], ")"}], "*", 
        "vol1"}]}], ";", "\[IndentingNewLine]", "\[IndentingNewLine]",

btw, I was surprised the stuff expands that much. Then again, 250 C is pretty hot. Nice eye-opener.
 
BvU said:
vol2 = (-1*^-8*T^3 + 6*^-6*T^2 - 2*^-5*T + 0.99695)*vol1;​

How do you parse that?
For example, what is A? "-1*^-8"??

I presume it's a polynomial fit to some experimental data set. I looked at the NIST chemistry webbook and it puts the volume increase from 25 to 250°C at just under 25%, which would very nearly fill the container in the simulation.
 
I can describe how I would approach this problem, first (a) without dissolution of N2 and O2 in the liquid water and then (b) with dissolution. But I would first like to hear from the OP about his articulation of the physical mechanisms involved.
 
  • #10
JT Smith said:
How do you parse that?
Come on ! $$v_2 = (-1*10^{-8}*T^3 + 6*10^{-6}*T^2 - 2*10^{-5}*T + 0.99695)*v_1$$As Clooney would say: What else ?
 
  • #11
The missing "10". It seems so obvious now. Thanks!
 
  • #12
Chestermiller said:
But I would first like to hear from the OP about his articulation of the physical mechanisms involved
Wholeheartedly subscribe to this. Expressions and equations are useless if not applied properly. Having a tool at your disposal is not equivalent to knowing what goes on !
 
  • #13
My first approximation was ## P_{tot} = P_{air} + P_{water} ##

I use the ideal gas law for the air pressure and Antoine's equation to calculate the water pressure. Given the simulation tool on wolfram alpha I use some approximation they don't use. In addition to this, I always get a tad nervous when I'm getting closer to the world of chemistry.

Edit, thanks for all help. I'll try to set up a model based on the polynomial fit used in the wolfram alpha tool.
 
  • #14
liquidFuzz said:
My first approximation was ## P_{tot} = P_{air} + P_{water} ##

I use the ideal gas law for the air pressure and Antoine's equation to calculate the water pressure. Given the simulation tool on wolfram alpha I use some approximation they don't use. In addition to this, I always get a tad nervous when I'm getting closer to the world of chemistry.

Edit, thanks for all help. I'll try to set up a model based on the polynomial fit used in the wolfram alpha tool.
My approach to this would be similar to yours, but a little more fleshed out. Let:

##\rho_L(T)## represent the density of liquid water at temperature T
##P(T)## represent the equilibrium vapor pressure of water at temperature T
##V_0## represent the volume of liquid water in the container at 25 C
##p_0## represent the pressure in the container at 25 C (in this case 1 atm)

Then the volume of gas in the container at 25 C is (V-V_0), where V is 1 liter. The mass of air in the container at 25 C (as well as all other temperatures) is then $$m_a=\frac{[p_0-P(25)]M_a}{298R}(V-V_0)$$where ##M_a## is the molecular weight of air. The mass of water in the container at 25 C (as well as all other temperatures) is: $$m_w=V_0\rho_L(25)+\frac{P(25)M_w}{298R}(V-V_0)$$where ##M_w## is the molecular weight of water. The first term on the right hand side of this equation is the mass of liquid water and the second term is the mass of water vapor.

Now for temperature T. Let f represent the fraction of the water that is liquid at temperature T. Then the mass of water in the gas phase must be ##m_a(1-f)##. And the total volume of liquid and gas must match the volume of the container V. This means that:
$$\frac{m_wf}{\rho_L(T)}+m_w(1-f)\frac{RT}{P(T)M_w}=V$$The first term on the left hand side of the equation is the volume of liquid water, and the second term is the volume of gas. This equation allows us to solve for f. Once f is known, we can solve for the partial pressure of air at temperature T as: $$p_{air}=\frac{m_aRT}{M_a\left[V-\frac{m_wf}{\rho_L(T)}\right]}$$Total pressure in the container at temperature T is then $$p=p_{air}+P(T)$$
 
Last edited:
  • #15
I think you meant ##m_w## instead of ##m_a## in a few places.

Your approach will result in a higher total pressure than in the simulation. On the other hand, whereas you ignore the air going in and out of solution the simulation assumes that it reaches equilibrium effectively instantaneously. If the animation is supposed to be real-time I think that dissolution rates would have to be considered. Am I wrong? Would it actually happen quickly enough as the pressure/temperature rises?
 
  • #16
JT Smith said:
I think you meant ##m_w## instead of ##m_a## in a few places.
Really? Like where?
Your approach will result in a higher total pressure than in the simulation. On the other hand, whereas you ignore the air going in and out of solution the simulation assumes that it reaches equilibrium effectively instantaneously. If the animation is supposed to be real-time I think that dissolution rates would have to be considered. Am I wrong?
Well, certainly, the dissolution of air is neglected in my analysis. But this can be included rather readily. As far as the rate effect is concerned, I'm not convinced that the animation describes the variations in real time. Is time included as a parameter in their equations?
Would it actually happen quickly enough as the pressure/temperature rises?
This would have to be quantified with a transient analysis.
 
  • #17
Chestermiller said:
Really? Like where?

Here and in the denominator of the equation that followed this one:

$$\frac{m_af}{\rho_L(T)}+m_a(1-f)\frac{RT}{P(T)M_w}=V$$I don't remember the simulation mentioning time. It wasn't in the accompanying equations.
 
  • Like
Likes   Reactions: Chestermiller
  • #18
JT Smith said:
Here and in the denominator of the equation that followed this one:

$$\frac{m_af}{\rho_L(T)}+m_a(1-f)\frac{RT}{P(T)M_w}=V$$I don't remember the simulation mentioning time. It wasn't in the accompanying equations.
Ah. Thanks. I'm going back and changing that.
 
  • #19
... and in the sentence preceding the equation. :-)
 
  • #20
Chestermiller said:
I can describe how I would approach this problem, first (a) without dissolution of N2 and O2 in the liquid water and then (b) with dissolution. But I would first like to hear from the OP about his articulation of the physical mechanisms involved.

Hi, I saw this now. I'm sorry I missed it and that I didn't notice your contribution in the thread. I'll walk through your ideas for solving it, when I have the time. Well now there's tad to much... life. :-)
 

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
621
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K