Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Help in evaluating the chain rule?

  1. May 6, 2012 #1
    $${x = r \cos \theta}$$,
    $${y = r \sin \theta}$$, $${r^2 = x^2 + y^2}$$ and $${\theta = \tmop{ \arctan} (y / x)}$$ (with some caveats for the last formula).

    Suppose $${u = u (x, y)}$$.

    Show that

    $${\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta}$$

    $${\frac{\partial u}{\partial \theta} = - \frac{\partial u}{\partial x} r \sin \theta + \frac{\partial u}{\partial y} r \cos \theta}$$


    Now suppose that $${u = u (r, \theta)}$$. Show that

    $${\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \cos \theta - \frac{\partial u}{\partial \theta} \frac{\sin \theta}{r}}$$

    $${\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \sin \theta + \frac{\partial u}{\partial \theta} \frac{\cos \theta}{r}}$$


    Now I've proved the italic part but am stuck on the bold parts basically how are they calculated. I've tried the same method as used in the italic part ut am getting different answers.
    For e.g in the last bold part instead of cos(theta)/r I got (cos(theta))^2.

    Help?
     
  2. jcsd
  3. May 6, 2012 #2
     
  4. May 6, 2012 #3
    I don't know how you did it, but your guess was spot on (regarding the cal-II final). Anyway I do need the proof let's say at a level expected for any cal-II student.

    Now as far as the
    (∂x/∂r) = cosθ and
    (∂y/∂r) = sinθ and
    (∂x/∂θ) = (apply product rule) = (∂r/∂θ)*(cosθ) + (r)(∂cosθ/∂θ) = -r*sin(θ)
    because (∂r/∂θ)=0 and (∂cosθ/∂θ) = -sin(θ) (where here I applied the chain rule, "outside is cos() and "inside" is theta. Derivative of outside is sine and derivative of theta with respect to theta is 1.
    (∂y/∂θ) = r*cos(θ), for similar reasons.


    I apologize cause I stated the wrong part of the question. My bad.

    The question is :

    Now suppose that $${u = u (r, \theta)}$$. Show that

    $${\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \cos \theta - \frac{\partial u}{\partial \theta} \frac{\sin \theta}{r}}$$

    $${\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \sin \theta + \frac{\partial u}{\partial \theta} \frac{\cos \theta}{r}}$$


    How do I prove these?
     
  5. May 6, 2012 #4
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Help in evaluating the chain rule?
  1. Chain rule help (Replies: 2)

  2. Help with chain rule (Replies: 9)

  3. Chain rule help (Replies: 4)

Loading...