Help Needed for Solving Electrical Circuit Problem

Click For Summary

Homework Help Overview

The discussion revolves around an electrical circuit problem involving current calculations and the correct application of formulas related to circuit behavior over time. Participants are examining the expression for current as a function of time and its implications for the results obtained.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants are questioning the validity of the original poster's expression for current, particularly its initial condition and the exponential decay factor. There are discussions about the correct formulation of the current equation and its parameters.

Discussion Status

Some participants have provided guidance on the correct expression for current and have pointed out potential errors in the original calculations. There is an ongoing exploration of the correct mathematical representation, with hints offered for LaTeX formatting as well.

Contextual Notes

There are indications of confusion regarding the setup of the circuit and the conditions under which the current is being calculated, particularly the role of the battery and the time constant in the equations being used.

lorenz0
Messages
151
Reaction score
28
Homework Statement
At the beginning the switch c of the circuit is in position 1. At t=0, it switches to position 2.
(1) Find ##I(0).## (2) Find ##t*## such that ##I(t*)=35mA.##
Relevant Equations
##I(t)=I(0)(1-e^{(-R/L)t)},\ I(0)=\frac{V}{R}##
What I have done:

(1) ##I(0)=\frac{V}{R}=\frac{1.5}{25}A=0.06 A.##

(2) By setting ##I(t*)=0.06(1-e^{-(35/0.4)t*})=35 mA## we get ##t*\approx 0.01 s##

What I have done seems correct to me, but the result for part (2) should be different.
I would be grateful if someone could point out to me where I have made a mistake.
 

Attachments

  • RL_circuit.png
    RL_circuit.png
    27.9 KB · Views: 132
Last edited:
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
You have the wrong expression for ##I(t)##. It does not predict that ##I(0) =0.06## A. What is the correct expression to use?

Also, please enter the exponent correctly in LaTeX as e^{-Rt/L} to render as ##e^{-Rt/L}##. Or you could write it as ##\exp(-R t/L)##.
 
Last edited:
  • Like
Likes   Reactions: lorenz0, berkeman, Steve4Physics and 1 other person
lorenz0 said:
(2) By setting ##I(t*)=0.06(1-e^((-35/0.4)t*))=35 mA## we get ##t*=\approx 0.01 s##
You have used the wrong formula! Can you see why? If you can't, click the spoiler for a hint:
When the switch has been at position 2 for a long time, do you expect the current through the inductor to be 0.06A?

Also, here's a LaTeX formatting hint:
e^(-R/L)t gives: ##e^(-R/L)t## (yuchy)
but
e^{(-R/L)t} gives: ##e^{(-R/L)t}## (slightly yuchy)
Another alternative is:
e^{-(R/L)t} gives: ##e^{-(R/L)t}## (almost not yuchy)

For zero-yuchiness, I would define the time-constant as ##\tau = \frac L R##. Then
e^{-\frac t {\tau}} gives: ##e^{-\frac t {\tau}}##.

Edit. @kuruman beat me to it or I would not have replied!
 
  • Like
Likes   Reactions: lorenz0, berkeman and kuruman
kuruman said:
You have the wrong expression for ##I(t)##. It does not predict that ##I(0) =0.06## A. What is the correct expression to use?

Also, please enter the exponent correctly in LaTeX as e^{-Rt/L} to render as ##e^{-Rt/L}##. Or you could write it as ##\exp(-R t/L)##.
I understand now, thanks. It should have been ##i(t)=0.06e^{-(R/L)t}## since, from time ##t=0## onwards, there isn't a battery connected to the "new" circuit anymore. By setting ##i(t^*)=35\cdot 10^{-3} A## I now get the correct value, thanks.
 
  • Like
Likes   Reactions: berkeman, kuruman and Steve4Physics

Similar threads

  • · Replies 1 ·
Replies
1
Views
858
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
933
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
975
Replies
7
Views
1K