Maximum voltage in the primary circuit of a transformer

In summary, the maximum voltage in the primary circuit of a transformer is determined by the transformer's design, including the turns ratio, input voltage, and the characteristics of the primary winding. It is crucial for ensuring efficient energy transfer and preventing insulation breakdown. Proper calculations and safety measures must be in place to manage voltage levels effectively.
  • #1
lorenz0
148
28
Homework Statement
The primary circuit of a transformer has ##N=240## windings, each one with area ##S=10cm^2##. In the primary circuit flows a sinusoidally alternating current. The magnetic field in the iron core of the transformer goes from the maximum value of ##B_0=65mT## along the direction perpendicular to the windings to the exact same value but in the opposite direction in ##\Delta t=10 ms##.

Find the maximum voltage in the primary circuit.
Relevant Equations
##V=-N\frac{d\phi(\vec{B})}{dt}##, ##V_{max}=\sqrt{2}V_{eff}##
The alternating current will create an induced voltage given by ##V=-N\frac{d\phi(\vec{B})}{dt}=-N\frac{\Delta\phi(\vec{B})}{\Delta t}=N\frac{2 B_0 S}{\Delta t}=\frac{240\cdot 2\cdot 65\cdot 10^{-3}\cdot 10\cdot 10^{-4}}{10\cdot 10^{-3}}=3.12 V## and since this is the effective voltage, the maximum voltage will be ##V_{max}=\sqrt{2}V_{eff}=\sqrt{2}\cdot 3.12 V\approx 4.4 V##. Now, the result given is ##4.9 V## but I haven't been able to figure out where I have made a mistake so I would be grateful if someone could point it out to me, thanks.
 
Last edited:
Physics news on Phys.org
  • #2
lorenz0 said:
Homework Statement: The primary circuit of a transformer has ##N=240## windings, each one with area ##S=10cm^2##. In the primary circuit flows a sinusoidally alternating current. ...
You seem to do ##\Delta \Phi/\Delta t## as if it were a sawtooth ...

##\ ##
 
Last edited:
  • Like
Likes lorenz0 and berkeman
  • #3
BvU said:
You seem to do ##\Delta \Phi/\Delta t## as if it were a sawtooth ...

##\ ##
Ah, I think I have understood now. Since ##V(t)=V_0\sin(\omega t)## it must be that ##B(t)=B_0\cos(\omega t)## with ##\omega=2\pi f=\frac{2\pi}{T}=\frac{2\pi}{2\delta t}=100\pi\ \frac{rad}{s}## so that ##V(t)=V_0\sin(\omega t)=-N\frac{d\phi(\vec{B})}{dt}=-N\frac{d}{dt}\left( B_0\cos(\omega t)S )\right)=NB_0S\omega\sin(\omega t)## thus ##V_0=NB_0S\omega=240\cdot 65\cdot 10^{-3}\cdot 10^{-3}\cdot 100\pi\ V\approx 4.9\ V.##
 
  • Like
Likes berkeman
Back
Top