Help Solving the following Differential equation

Click For Summary

Homework Help Overview

The discussion revolves around solving the differential equation (x-1)y'' - xy' + y = 0, with the condition that x > 1 and y1 = e^x is a known solution. Participants are exploring methods of solving this equation, particularly through reduction of order and manipulation of the equation's form.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • The original poster attempts to manipulate the equation by multiplying through by (1/(x-1)) to simplify it into a standard form. They also explore the method of reduction of order, proposing a solution of the form Y(x) = v(x)y1. Some participants question the correctness of the manipulation and suggest clarifying the use of parentheses in the expressions.

Discussion Status

Participants are actively engaging with the original poster's approach, providing feedback on the manipulation of the equation and suggesting alternative methods. There is a recognition of the original poster's efforts, and while some corrections are offered, the discussion remains open without a clear consensus on the next steps.

Contextual Notes

There are indications that the original poster may have made errors in notation, particularly regarding the use of parentheses, which some participants highlight as a source of confusion. The discussion also reflects a learning environment where participants are encouraged to clarify their reasoning and assumptions.

Jose Z
Messages
1
Reaction score
0

Homework Statement


Solve (x-1)y''-xy'+y=0 , given x>1 and y1=ex

Homework Equations

The Attempt at a Solution


I've tried solving it by multiplying everythin for (1/x-1), so my equation looks like:
y''-(x/x-1)y'+y=0 (because x-1 is unequal to 0) (1)
so now the equation has the form of:
y''+p(x)y'+y=0, with p(x)=(-x/x-1).
Then, given the fact that y1 is a solution, then another solution has the form Y(x)=v(x)y1
Then: Y'(x)=v'(x)y1+v(x)y1'
Y''(X)=v''(x)y1+v'(x)y1+v'(x)y1+v(x)y1'
Now, after replacing the y factors in (1) with Y and its derivatives, I get:
v''(x)y1+(2y1+p(x)y1=0,
Which can me solved as a first order differential equation by doing v''(x)=z'(x) and v'(x)=z(x).
Then, let μ(x)=e∫p(x)dx=e∫(-x/x-1)dx=e-x-ln(x-1)=e-x(1/x-1)
Then, z(x)=(∫μ(x)g(x)dx+c1)/μ(x)=c1/(e-x/(x-1))=c1(ex(x-1))

Now, because z(x)=v'(x)→∫z(x)dx=v(x)
Then I have v(x)=c1∫(ex(x-1)dx=c1((x-2)ex+c2)
But, whenever I do Y(x)=v(x)y1, and replace it in (1), it doesn't satisfy the equation-

Can somebody help?
 
Physics news on Phys.org
In the first line I believe that you should have y''-(x/x-1)y'+y(1/(x-1))=0
 
Welcome to PF;
Is y1 a solution?

When you are given a solution, always try reduction of order.
Try y(x)=v(x)e^x and solve for v.
 
Jose Z said:

Homework Statement


Solve (x-1)y''-xy'+y=0 , given x>1 and y1=ex

Homework Equations

The Attempt at a Solution


I've tried solving it by multiplying everythin for (1/x-1), so my equation looks like:
y''-(x/x-1)y'+y=0 (because x-1 is unequal to 0) (1)
so now the equation has the form of:
y''+p(x)y'+y=0, with p(x)=(-x/x-1).
Then, given the fact that y1 is a solution, then another solution has the form Y(x)=v(x)y1
Then: Y'(x)=v'(x)y1+v(x)y1'
Y''(X)=v''(x)y1+v'(x)y1+v'(x)y1+v(x)y1'
Now, after replacing the y factors in (1) with Y and its derivatives, I get:
v''(x)y1+(2y1+p(x)y1=0,
Which can me solved as a first order differential equation by doing v''(x)=z'(x) and v'(x)=z(x).
Then, let μ(x)=e∫p(x)dx=e∫(-x/x-1)dx=e-x-ln(x-1)=e-x(1/x-1)
Then, z(x)=(∫μ(x)g(x)dx+c1)/μ(x)=c1/(e-x/(x-1))=c1(ex(x-1))

Now, because z(x)=v'(x)→∫z(x)dx=v(x)
Then I have v(x)=c1∫(ex(x-1)dx=c1((x-2)ex+c2)
But, whenever I do Y(x)=v(x)y1, and replace it in (1), it doesn't satisfy the equation-

Can somebody help?

Please learn to use parentheses properly, so that you write ##\frac{1}{x-1}## instead of ##\frac{1}{x}-1##, as you have done throughout (thus making everything you write incorrect). It's easy: just write 1/(x-1) instead of 1/x-1.
 
Ray Vickson said:
Please learn to use parentheses properly, so that you write ##\frac{1}{x-1}## instead of ##\frac{1}{x}-1##, as you have done throughout (thus making everything you write incorrect). It's easy: just write 1/(x-1) instead of 1/x-1.

Jose Z said:
I've tried solving it by multiplying everythin for (1/x-1), so my equation looks like:
@Jose Z, you have parentheses in what you wrote -- (1/x-1) -- the problem is that they are in the wrong place. They should be around the terms in the denominator, the way that Ray wrote the fraction, not around the entire fraction.
 
@Jose Z : How did you get on?

I feel we have been dumping on you somewhat ... I thought the use of parentheses in post #1 was clear from context and the proper use is only a recommended tweak for future consideration (It won't always be clear). As first posts go, yours was high quality: you have sincerely attempted the problem, as well as shown how you got stuck, so it is easy to decide what we need to tell you so you get the most out of these forums.

Well done and keep it up. :)
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
1K