Help with an irregular integral

  1. I am looking for help with doing the following integral :
    [tex]\frac{1}{2\pi i}\int_{1}^{\infty}\ln\left(\frac{1-e^{-2\pi i x}}{1-e^{2\pi i x}} \right )\frac{dx}{x\left(\ln x+z\right)}\;\;\;\;z\in \mathbb{C}[/tex]
    i tried to transform it into a complex integral along a 'keyhole' contour, with a branch cut along the +ive real line [itex]\left[1,\infty\right)[/itex]. but then [itex]\;\ln x\;[/itex] would be transformed into [itex]\;\ln x+2\pi i\;[/itex] when doing the integral along [itex]\left(\infty,1\right]\;[/itex] which doesn't add up nicely to the portion along [itex]\left[1,\infty\right)[/itex]. any insights are appreciated.
  2. jcsd
  3. haruspex

    haruspex 15,974
    Science Advisor
    Homework Helper
    Gold Member
    2014 Award

    Doesn't this simplify fairly easily?
  4. you would think !!! but no, it doesn't ....
  5. The integral above is equivalent to :

    [tex] \int_{1}^{\infty}\left(\frac{1}{2}-x+\left \lfloor x \right \rfloor \right )\left(\frac{1}{x\left(\ln x+z\right)}\right)dx [/tex]
    [tex]\int_{1}^{\infty}\sum_{n=1}^{\infty}\frac{\sin(2 \pi n x)}{n\pi}\left(\frac{1}{x\left(\ln x+z\right)}\right)dx [/tex]
  6. haruspex

    haruspex 15,974
    Science Advisor
    Homework Helper
    Gold Member
    2014 Award

    [itex]\frac{1-e^{-2\pi i x}}{1-e^{2\pi i x}} = \frac{e^{-2\pi i x}(e^{2\pi i x}-1)}{1-e^{2\pi i x}} = -e^{-2\pi i x}[/itex]
    I end up with [itex]\int_0^∞\frac{1-2e^u}{2(u+z)}du[/itex]
    which surely doesn't converge?
  7. you missed the fact that the inverse of the complex exponential - the complex [itex]\log[/itex] function- is multivalued. namely :
    [tex] \frac{1-e^{-2\pi i x}}{1-e^{2\pi i x}}=-e^{-2\pi i x}=e^{-2\pi i \left(x-1/2\right)}=e^{-2\pi i \left(\left \{ x \right \}-1/2\right)}[/tex]
    Where [itex] \left \{ x \right \}[/itex] is the fractional part of x. Thus:
    [tex] \frac{1}{2\pi i}\ln\left(\frac{1-e^{-2\pi i x}}{1-e^{2\pi i x}}\right)=\frac{1}{2}-\left \{ x \right \}[/tex]
    Another way to think of it is to take the Taylor expansion of the [itex] \log[/itex]:
    [tex] \frac{1}{2\pi i}\left(\ln\left(1-e^{-2\pi i x}\right)-\ln(1-e^{2\pi i x})\right)=\frac{1}{2\pi i}\sum_{k=1}^{\infty}\frac{e^{2\pi i k x}-e^{-2\pi i kx}}{k}=\sum_{n=1}^{\infty}\frac{\sin(2\pi k x)}{k\pi}[/tex]
    Which in turn is the Fourier expansion of [itex]\frac{1}{2}-\left \{ x \right \} [/itex]
    Using these facts, we can prove that the integral in question is equal to the limit:
    [tex] e^{-z}\text{Ei}(z)+\lim_{N\rightarrow \infty}\sum_{n=1}^{N}\left(n+\frac{1}{2} \right )\ln\left(\frac{\ln(n+1)+z}{\ln(n)+z} \right )-e^{-z}\text{Ei}(z+\ln N)[/tex]
    Where [itex] \text{Ei}(z)[/itex] is the exponential integral function. But i'm stuck with this cumbersome limit
    Last edited: Dec 12, 2012
Know someone interested in this topic? Share this thead via email, Google+, Twitter, or Facebook

Have something to add?