Help With Solving Integral of (sinx)^2/x

  • Context: MHB 
  • Thread starter Thread starter vilhelm
  • Start date Start date
  • Tags Tags
    Integrate
Click For Summary

Discussion Overview

The discussion revolves around the integral of \((\sin x)^2/x\), focusing on its convergence properties and methods for evaluation. Participants explore various mathematical techniques, substitutions, and series expansions related to the integral, while also addressing the divergence of the integral over certain intervals.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants express difficulty in solving the integral and seek assistance.
  • One participant suggests that the integral diverges and asks for proof.
  • Another proposes using the identity \(\sin^2(x) = \frac{1}{2} - \frac{1}{2}\cos(2x)\) and applying the MacLaurin series for cosine to approach the integral.
  • Several participants note that the integral \(\int^{\infty}_0 \frac{\sin^n(x)}{x}\, dx\) converges only for odd powers of \(n\), although they do not provide proof.
  • One participant provides a detailed argument involving intervals of the form \(n\pi \le x \le (n+1)\pi\) to show that the integral diverges.
  • Another participant expresses confusion about the solution steps and requests further clarification.
  • Some participants discuss the possibility of using complex contour integrals for evaluation.
  • There are mentions of identities for higher powers of sine, suggesting a pattern for odd powers and their integrals.
  • One participant reflects on the periodicity of the sine function and its implications for understanding the integral's behavior.

Areas of Agreement / Disagreement

Participants generally agree that the integral diverges, but there are multiple competing views on the methods for evaluating it and the implications of its divergence. The discussion remains unresolved in terms of a definitive solution or proof.

Contextual Notes

Some participants express uncertainty about specific mathematical identities and their applications, indicating a potential gap in foundational knowledge for some contributors.

vilhelm
Messages
37
Reaction score
0
I have tried the substitutions I know og, but I just can't solve it. It would be great if someone helped me on this one.View attachment 1535
 

Attachments

  • sin.png
    sin.png
    753 bytes · Views: 140
Physics news on Phys.org
Re: integrate (sinx)^2/x

oooppp2 said:
I have tried the substitutions I know og, but I just can't solve it. It would be great if someone helped me on this one.https://www.physicsforums.com/attachments/1535

Welcome to MHB, oooppp2! :)

So which means do you have available?
To give you a heads-up: the integral diverges.
Can you prove it?
 
oooppp2 said:
I have tried the substitutions I know og, but I just can't solve it. It would be great if someone helped me on this one.https://www.physicsforums.com/attachments/1535

A substitution won't help you. I'd suggest writing \displaystyle \begin{align*} \sin^2{(x)} = \frac{1}{2} - \frac{1}{2}\cos{(2x)} \end{align*}, and then applying the MacLaurin Series for Cosine

\displaystyle \begin{align*} \cos{(t)} &= 1 - \frac{t^2}{2} + \frac{t^4}{4!} - \frac{t^6}{6!} + \dots \\ \cos{(2x)} &= 1 - \frac{ (2x)^2}{2} + \frac{(2x)^4}{4!} - \frac{(2x)^6}{6!} + \dots \\ &= 1 - 2x + \frac{2}{3}x^4 - \frac{4}{45}x^6 + \dots \end{align*}

Use this series to get a series for \displaystyle \begin{align*} \sin^2{(x)} \end{align*}, divide everything through by x and see what you get when you integrate...
 
Interestingly

$$\int^{\infty}_0 \frac{\sin^n(x)}{x}\, dx$$

only converges for odd powers of $n$ , I cannot prove it though.
 
ZaidAlyafey said:
Interestingly

$$\int^{\infty}_0 \frac{\sin^n(x)}{x}\, dx$$

only converges for odd powers of $n$ , I cannot prove it though.

I expect you need to do a complex contour integral...
 
oooppp2 said:
I have tried the substitutions I know og, but I just can't solve it. It would be great if someone helped me on this one.https://www.physicsforums.com/attachments/1535

In any interval $\displaystyle n\ \pi \le x \le (n+1)\ \pi$ is...

$\displaystyle \frac{\sin^{2} x}{x} \ge \frac{\sin^{2} x}{(n+1)\ \pi}\ (1)$

... and because is...

$\displaystyle \int_{n\ \pi}^{(n+1)\ \pi} \sin^{2} x\ d x = \frac{\pi}{2}\ (2)$

... we have...

$\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x}\ d x > \frac{1}{2}\ \sum_{n=0}^{\infty} \frac{1}{n+1}\ (3)$

But the series in (3) diverges so that also the integral in the OP diverges...

Kind regards$\chi$ $\sigma$
 
chisigma said:
In any interval $\displaystyle n\ \pi \le x \le (n+1)\ \pi$ is...

$\displaystyle \frac{\sin^{2} x}{x} \ge \frac{\sin^{2} x}{(n+1)\ \pi}\ (1)$

... and because is...

$\displaystyle \int_{n\ \pi}^{(n+1)\ \pi} \sin^{2} x\ d x = \frac{\pi}{2}\ (2)$

... we have...

$\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x}\ d x > \frac{1}{2}\ \sum_{n=0}^{\infty} \frac{1}{n+1}\ (3)$

But the series in (3) diverges so that also the integral in the OP diverges...

Kind regards$\chi$ $\sigma$

Thanks. But I cannot follow your solution, can you provide some more steps?
 
oooppp2 said:
Thanks. But I cannot follow your solution, can you provide some more steps?

I'm afraid to have been misundestood... the problem You proposed has no solutions because the integral...

$\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x}\ dx$

... diverges...

Kind regards

$\chi$ $\sigma$
 
I want to understand this, but now, the solution is too short for me to understand. (First semester of calculus.)

Did I not study enough, or does it come later, that

$\displaystyle \int_{n\ \pi}^{(n+1)\ \pi} \sin^{2} x\ d x = \frac{\pi}{2}\ (2)$

This was unknown to me.
 
  • #10
oooppp2 said:
I want to understand this, but now, the solution is too short for me to understand. (First semester of calculus.)

Did I not study enough, or does it come later, that

$\displaystyle \int_{n\ \pi}^{(n+1)\ \pi} \sin^{2} x\ d x = \frac{\pi}{2}\ (2)$

This was unknown to me.

Use the identity:

$$\sin^2(\theta)=\frac{1-\cos(2\theta)}{2}$$
 
  • #11
chisigma said:
In any interval $\displaystyle n\ \pi \le x \le (n+1)\ \pi$ is...

$\displaystyle \frac{\sin^{2} x}{x} \ge \frac{\sin^{2} x}{(n+1)\ \pi}\ (1)$

... and because is...

$\displaystyle \int_{n\ \pi}^{(n+1)\ \pi} \sin^{2} x\ d x = \frac{\pi}{2}\ (2)$

... we have...

$\displaystyle \int_{0}^{\infty} \frac{\sin^{2} x}{x}\ d x > \frac{1}{2}\ \sum_{n=0}^{\infty} \frac{1}{n+1}\ (3)$

But the series in (3) diverges so that also the integral in the OP diverges...

Kind regards$\chi$ $\sigma$

Very nice and classic. I reckon this is a way of transforming the interval [a,infinity) to a bounded interval using the periodicity of the function.

- - - Updated - - -

Prove It said:
I expect you need to do a complex contour integral...

The result for $$n=1$$ is quite known and it can be done in a number of ways , but haven't tried it for higher powers. I wonder if there is a general formula .
 
  • #12
ZaidAlyafey said:
The result for $$n=1$$ is quite known and it can be done in a number of ways , but haven't tried it for higher powers. I wonder if there is a general formula .

Let's try to solve...

$\displaystyle \int_{0}^{\infty} \frac{\sin ^{3} x}{x}\ d x\ (1)$

We start from the trigonometric identity...

$\displaystyle \sin^{3} x = \frac{3}{4}\ \sin x - \frac{1}{4}\ \sin 3\ x\ (2)$

... and (2) permits us to write...

$\displaystyle \int_{0}^{\infty} \frac{\sin ^{3} x}{x}\ d x = \frac{3}{4}\ \int_{0}^{\infty} \frac{\sin x}{x}\ dx - \frac{1}{4}\ \int_{0}^{\infty} \frac{\sin 3 x}{x}\ dx = \frac{\pi}{4}\ (3)$

Kind regards

$\chi$ $\sigma$
 
  • #13
chisigma said:
Let's try to solve...

$\displaystyle \int_{0}^{\infty} \frac{\sin ^{3} x}{x}\ d x\ (1)$

We start from the trigonometric identity...

$\displaystyle \sin^{3} x = \frac{3}{4}\ \sin x - \frac{1}{4}\ \sin 3\ x\ (2)$

... and (2) permits us to write...

$\displaystyle \int_{0}^{\infty} \frac{\sin ^{3} x}{x}\ d x = \frac{3}{4}\ \int_{0}^{\infty} \frac{\sin x}{x}\ dx - \frac{1}{4}\ \int_{0}^{\infty} \frac{\sin 3 x}{x}\ dx = \frac{\pi}{4}\ (3)$

The integral...

$\displaystyle \int_{0}^{\infty} \frac{\sin ^{5} x}{x}\ dx\ (1)$

... is solved in similar way using the identity...

$\displaystyle \sin^{5} x = \frac{10\ \sin x - 5\ \sin 3 x + \sin 5 x}{16}\ (2)$

... so that is...

$\displaystyle \int_{0}^{\infty} \frac{\sin ^{5} x}{x}\ dx = \frac{3}{16}\ \pi\ (3)$

Clearly it is not difficult to find a general formula for n odd...

Kind regards

$\chi$ $\sigma$
 
  • #14
If $f(x)$ is continuous and $\pi$-periodic on $\mathbb{R}$, then $ \displaystyle \int_{-\infty}^{\infty} f(x) \frac{\sin x}{x} \ dx = \int_{0}^{\pi} f(x) \ dx $.$ \displaystyle \int_{-\infty}^{\infty} f(x) \frac{\sin x}{x} \ dx = \sum_{k=-\infty}^{\infty} \int^{(k+1) \pi}_{k \pi} f(x) \frac{\sin x}{x} \ dx $

$ \displaystyle = \sum_{k=-\infty}^{\infty} \int^{\pi}_{0} f(u + k \pi) \frac{\sin (u + k \pi)}{u + k \pi} \ du = \sum_{k = -\infty}^{\infty} \int_{0}^{\pi} f(u) (-1)^{k} \frac{\sin u}{u + k \pi} \ du $

$ \displaystyle = \int_{0}^{\pi} f(u) \sin u \sum_{k=-\infty}^{\infty} \frac{(-1)^{k}}{u + k \pi} \ du = \int_{0}^{\pi} f(u) \sin u \csc u \ du $

$ \displaystyle = \int_{0}^{\pi} f(u) \ du $
$ \displaystyle \int_{0}^{\infty} \frac{\sin^{2n+1} (x)}{x} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin^{2n+1} (x)}{x} \ dx = \frac{1}{2} \int_{-\infty}^{\infty} \sin^{2n} (x) \frac{\sin x}{x} \ dx$

$ \displaystyle = \frac{1}{2} \int_{0}^{\pi} \sin^{2n} (x) \ dx = \int_{0}^{\frac{\pi}{2}} \sin^{2n} (x) \ dx = \int_{0}^{\frac{\pi}{2}} \sin^{2(n+\frac{1}{2})-1} (x) \cos^{2(\frac{1}{2}) -1} (x) \ dx $

$ \displaystyle = \frac{1}{2} B \Big( n+\frac{1}{2},\frac{1}{2} \Big) = \frac{1}{2} \frac{\Gamma(n+ \frac{1}{2}) \sqrt{\pi}}{n!} = \frac{\pi}{2^{2n}} \frac{(2n-1)!}{n! (n-1)!} \frac{2n}{2n}$

$ \displaystyle = \frac{\pi}{2^{2n+1}} \binom{2n}{n} $
 
Last edited:
  • #15
What about this argument:

we know how the graph of sin^2(x) looks, since we can write it in terms of cos(2x).

and sin^2(x) is divided by x, so we can actually understand how the graph looks for any x except zero (put it in you grapher and see).

for the given function, we have f(x)=-f(-x) for all x except 0.

so let's take the limit of f(x) as x -> 0 from both positive and negative direction. We'll se that f approaches. thus, even for x close to 0 the function is defined.

now, since the area from x = - infty to x=0 is equal to the area from x = infty to x=0 we see on the graph that they cancel out, and the answer should be: zero.

Is this reasoning wrong? If so, why?
 
  • #16
That's called the Cauchy principal value of the integral. It's a common way to assign a value to some divergent integrals by taking a limit in a symmetrical fashion. If an integral converges, it is equal to its Cauchy principal value. This fact can sometimes be very useful.
 
  • #17
Random Variable said:
That's called the Cauchy principal value of the integral. It's a common way to assign a value to some divergent integrals by taking a limit in a symmetrical fashion. If an integral converges, it is equal to its Cauchy principal value. This fact can sometimes be very useful.

So, I'm correct?
 
  • #18
$\displaystyle \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x} \ dx = \lim_{N \to \infty} \int_{-N}^{0} \frac{\sin^{2} x}{x} \ dx + \lim_{N \to \infty} \int_{0}^{N} \frac{\sin^{2} x}{x} \ dx$ does not converge.

But $ \displaystyle \text{PV} \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x} \ dx = \lim_{N \to \infty} \int_{-N}^{N} \frac{\sin^{2}x}{x} \ dx = 0 $.As shown in this thread, the issue is not the behavior of the function near $x=0$. It's the behavior of the function as $x \to \pm \infty$.
 
  • #19
Random Variable said:
$\displaystyle \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x} \ dx = \lim_{N \to \infty} \int_{-N}^{0} \frac{\sin^{2} x}{x} \ dx + \lim_{N \to \infty} \int_{0}^{N} \frac{\sin^{2} x}{x} \ dx$ does not converge.

But $ \displaystyle \text{PV} \int_{-\infty}^{\infty} \frac{\sin^{2} x}{x} \ dx = \lim_{N \to \infty} \int_{-N}^{N} \frac{\sin^{2}x}{x} \ dx = 0 $.As shown in this thread, the issue is not the behavior of the function near $x=0$. It's the behavior of the function as $x \to \pm \infty$.

Wouldn't it be very obvious how it behaves when x approaches infty – since for very large x, the denominator would be very large, but the numerator is periodic. So the fraction approaches 0. Correct or wrong?
 
  • #20
The fact that $ \displaystyle \lim_{x \to \infty} \frac{\sin^{2} x}{x} = 0$ does not tell you anything about the convergence of the integral.
 
Last edited:
  • #21
So the view that integral from a to b for f(x) is the area under that curve, is not an exact view in this case?
 
  • #22
Only if $b= \infty$ (or if $a=-\infty$). Otherwise the signed area (a term that some snotty mathematicians despise) is finite.

I said something in my last post (which I deleted) that wasn't true for this integral. I hope you didn't read it and get more confused.
 
  • #23
Random Variable said:
Only if $b= \infty$ (or if $a=-\infty$). Otherwise the signed area (a term that some snotty mathematicians despise) is finite.

I said something in my last post (which I deleted) that wasn't true for this integral. I hope you didn't read it and get more confused.

I must be a snotty mathematician :P
 
  • #24
Random Variable said:
Only if $b= \infty$ (or if $a=-\infty$). Otherwise the signed area (a term that some snotty mathematicians despise) is finite.

I said something in my last post (which I deleted) that wasn't true for this integral. I hope you didn't read it and get more confused.

And in this case, a is indeed $-\infty$ and b is indeed $\infty$.
 
  • #25
If the limit of a function near infinity exits that doesn't tell us anything about the convergence of the integral , take the following example

$$\lim_{n \to \infty} \int_1^{n} \frac{1}{x}\, dx $$

I think you can prove the integral diverges .
 
  • #26
  • #27
DreamWeaver said:
This paper here might clear things up -->

http://129.81.170.14/~vhm/papers_html/final16.pdf

It is a very interesting paper , I did take a look at the first pages in the past but didn't finish it. That is a remainder to read it all , thanks !
 
  • #28
No worries, friend... :D
 

Similar threads

  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K