Help with variation of the 3-dimensional ##\sigma##-model action

user1139
Messages
71
Reaction score
8
Homework Statement
See below.
Relevant Equations
See below.
Consider the following action

$$S=\int\mathrm{d}^3x\sqrt{h}\left[R^{(3)}-\frac{1}{4}\mathrm{Tr}\left(\chi^{-1}\chi_{,i}\chi^{-1}\chi^{,i}\right)\right]$$

where ##h## is the determinant of the 3-dimensional metric tensor ##h_{ij}## and ##R## is the Ricci scalar.

I want to get the equations of motion

\begin{align*}
\left(\chi^{-1}\chi^{,i}\right)_{;i}&=0,\\
R_{ij}&=\frac{1}{4}\mathrm{Tr}\left(\chi^{-1}\chi_{,i}\chi^{-1}\chi_{,j}\right).
\end{align*}

However, how do I perform the variation on the trace?
 
Physics news on Phys.org
Thomas1 said:
Homework Statement:: See below.
Relevant Equations:: See below.

Consider the following action

$$S=\int\mathrm{d}^3x\sqrt{h}\left[R^{(3)}-\frac{1}{4}\mathrm{Tr}\left(\chi^{-1}\chi_{,i}\chi^{-1}\chi^{,i}\right)\right]$$

where ##h## is the determinant of the 3-dimensional metric tensor ##h_{ij}## and ##R## is the Ricci scalar.

I want to get the equations of motion

\begin{align*}
\left(\chi^{-1}\chi^{,i}\right)_{;i}&=0,\\
R_{ij}&=\frac{1}{4}\mathrm{Tr}\left(\chi^{-1}\chi_{,i}\chi^{-1}\chi_{,j}\right).
\end{align*}

However, how do I perform the variation on the trace?
If your concern is only about the variation of the trace, you better ignore the coupling to gravity. Also, the manipulations hold in any number of dimensions. The relevant identities are \delta \mbox{Tr}(\cdot) = \mbox{Tr}(\delta \cdot), \delta \partial = \partial \delta, \mbox{Tr}(AB) = \mbox{Tr}(BA), and the following important two \delta u^{-1} = - u^{-1} (\delta u) u^{-1}, \ \ \ \ (1)\partial u^{-1} = - u^{-1}(\partial u) u^{-1}. \ \ \ \ (2) To make your life easy, define the vector A^{\mu} = u^{-1} \partial^{\mu} u. So, the NLSM action becomes S = - \frac{1}{4} \int d^{n}x \ \mbox{Tr}(A^{\mu}A_{\mu}). Thus \delta S = - \frac{1}{2} \int d^{n}x \ \mbox{Tr}(A^{\mu} \ \delta A_{\mu}) . Now, use (1) to obtain \delta A_{\mu} = u^{-1} \ \partial_{\mu}\delta u - u^{-1} \ \delta u \ A_{\mu} . Substitute in \delta S, you get \delta S = \frac{1}{2} \int \ \mbox{Tr}\left( u^{-1}\delta u \ A_{\mu}A^{\mu} - A^{\mu} u^{-1} \ \partial_{\mu}\delta u \right). Integrate the 2nd term by part and ignore the surface term to obtain \delta S = \frac{1}{2} \int \ \mbox{Tr}\left( u^{-1}\delta u \ A^{\mu}A_{\mu} + \partial_{\mu}(A^{\mu}u^{-1}) \ \delta u \right). Finally, expand the differentiation in the second term and use (2) to get \delta S = \frac{1}{2} \int \ \mbox{Tr} \left( u^{-1}\delta u \ A^{\mu}A_{\mu} + \partial_{\mu}A^{\mu} \ u^{-1}\delta u - A^{\mu}A_{\mu} \ u^{-1}\delta u \right). The first and the third terms add up to zero (because \mbox{Tr}(ab)= \mbox{Tr} (ba)), and you end up with \delta S = \frac{1}{2} \int \ \mbox{Tr}\left( (\partial_{\mu}A^{\mu}) u^{-1} \ \delta u \right). This gives you the equation of motion \partial_{\mu}A^{\mu} \equiv \partial_{\mu} \left(u^{-1} \ \partial^{\mu}u \right) = 0.
 
  • Like
Likes ergospherical
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top