MHB Heptagon Challenge: Proving $\dfrac{1}{2}<\dfrac{S_Q+S_R}{S_P}<2-\sqrt{2}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge
Click For Summary
The discussion focuses on proving the inequality $\frac{1}{2} < \frac{S_Q + S_R}{S_P} < 2 - \sqrt{2}$ for the areas of three regular heptagons, denoted as $S_P$, $S_Q$, and $S_R$. The heptagons are defined with specific side lengths, where $P_1P_2 = Q_1Q_3 = R_1R_4$. Participants analyze the geometric properties and relationships between the areas based on these dimensions. The proof involves comparing the areas derived from the side lengths and applying geometric inequalities. The conclusion emphasizes the validity of the established inequality for the areas of the heptagons.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $P_1P_2P_3P_4P_5P_6P_7,\,Q_1Q_2Q_3Q_4Q_5Q_6Q_7,\,R_1R_2R_3R_4R_5R_6R_7$ be regular heptagons with areas $S_P,\,S_Q$ and $S_R$ respectively. Let $P_1P_2=Q_1Q_3=R_1R_4$. Prove that $\dfrac{1}{2}<\dfrac{S_Q+S_R}{S_P}<2-\sqrt{2}$
 
Mathematics news on Phys.org
[TIKZ]\draw[thick] (0,0) circle (3cm);
\coordinate[label=left:$P_1$] (A) at (-1.96,-2.28);
\coordinate[label=left:$P_7$] (B) at (-3,0);
\coordinate[label=left:$P_6$] (C) at (-1.94,2.3);
\coordinate[label=above:$P_5$] (D) at (0.54,2.92);
\coordinate[label=right:$P_4$] (E) at (2.5,1.7);
\coordinate[label=right:$P_3$] (F) at (2.88,-0.9);
\coordinate[label=below:$P_2$] (G) at (0.7,-2.9);
\coordinate[label=below:$a$] (H) at (-0.4,-2.26);
\coordinate[label=below:$b$] (I) at (1.2,-0.86);
\coordinate[label=below:$c$] (J) at (0.7,0.6);
\draw (A) -- (B) -- (C) -- (D) -- (E) -- (F)--(G)--(A);
\draw (A) -- (D);
\draw (A) -- (F);
\draw (A) -- (E);
\draw (D) -- (F);
[/TIKZ]
Let $P_1P_2=a,\,P_1P_3=b,\,P_1P_4=c$. By the Ptolomeus thoerem for the quadrangle $P_1P_3P_4P_5$ it follows that $ab+ac=bc$, i.e. $\dfrac{a}{b}+\dfrac{a}{c}=1$. Since $\triangle P_1P_2P_3\equiv \triangle Q_1Q_2Q_3$, then $\dfrac{Q_1Q_2}{Q_1Q_3}=\dfrac{a}{b}$ and hence $Q_1Q_2=\dfrac{a^2}{b}$.

Analogously $R_1R_2=\dfrac{a^2}{c}$. Therefore, $\dfrac{S_Q+S_R}{S_P}=\dfrac{a^2}{b}+\dfrac{a^2}{c}$. Then $\dfrac{a^2}{b}+\dfrac{a^2}{c}>\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{a}{c}\right)^2=\dfrac{1}{2}$ (equality is not possible because $\dfrac{a}{b}\ne\dfrac{a}{c}$.

On the other hand

$\dfrac{a^2}{b^2}+\dfrac{a^2}{c^2}=\left(\dfrac{a}{b}+\dfrac{a}{c}\right)^2-\dfrac{2a^2}{bc}=1-\dfrac{2a^2}{bc}$---(1)

By the Sine theorem, we get

$\dfrac{a^2}{bc}=\dfrac{\sin^2 \dfrac{\pi}{7}}{\sin^2 \dfrac{\pi}{7}\sin^2 \dfrac{4\pi}{7}}=\dfrac{1}{4\cos\dfrac{2\pi}{7}\left(1+\cos\dfrac{2\pi}{7}\right)}$

Since $\cos\dfrac{2\pi}{7}<\cos \dfrac{\pi}{4}=\dfrac{\sqrt{2}}{2}$, then $\dfrac{a^2}{bc}>\dfrac{1}{4\dfrac{\sqrt{2}}{2}\left(1+\dfrac{\sqrt{2}}{2}\right)}=\sqrt{2}-1$. From here and from (1), we get the right hand side inequality of the problem.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
982
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
916
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
704
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K