Heptagon Challenge: Proving $\dfrac{1}{2}<\dfrac{S_Q+S_R}{S_P}<2-\sqrt{2}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge
Click For Summary
SUMMARY

The discussion centers on proving the inequality $\dfrac{1}{2}<\dfrac{S_Q+S_R}{S_P}<2-\sqrt{2}$ for the areas of three regular heptagons, denoted as $S_P$, $S_Q$, and $S_R$. The heptagons are defined with specific side lengths where $P_1P_2=Q_1Q_3=R_1R_4$. The proof involves geometric properties and area calculations of regular heptagons, establishing the bounds of the ratio of their areas definitively.

PREREQUISITES
  • Understanding of regular heptagon properties
  • Knowledge of geometric area calculations
  • Familiarity with inequalities in mathematical proofs
  • Basic concepts of polygon geometry
NEXT STEPS
  • Study the area formulas for regular polygons, specifically heptagons
  • Explore geometric inequalities and their proofs
  • Investigate the properties of regular heptagons in depth
  • Learn about advanced techniques in mathematical proofs involving inequalities
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying advanced geometry or mathematical proofs will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $P_1P_2P_3P_4P_5P_6P_7,\,Q_1Q_2Q_3Q_4Q_5Q_6Q_7,\,R_1R_2R_3R_4R_5R_6R_7$ be regular heptagons with areas $S_P,\,S_Q$ and $S_R$ respectively. Let $P_1P_2=Q_1Q_3=R_1R_4$. Prove that $\dfrac{1}{2}<\dfrac{S_Q+S_R}{S_P}<2-\sqrt{2}$
 
Mathematics news on Phys.org
[TIKZ]\draw[thick] (0,0) circle (3cm);
\coordinate[label=left:$P_1$] (A) at (-1.96,-2.28);
\coordinate[label=left:$P_7$] (B) at (-3,0);
\coordinate[label=left:$P_6$] (C) at (-1.94,2.3);
\coordinate[label=above:$P_5$] (D) at (0.54,2.92);
\coordinate[label=right:$P_4$] (E) at (2.5,1.7);
\coordinate[label=right:$P_3$] (F) at (2.88,-0.9);
\coordinate[label=below:$P_2$] (G) at (0.7,-2.9);
\coordinate[label=below:$a$] (H) at (-0.4,-2.26);
\coordinate[label=below:$b$] (I) at (1.2,-0.86);
\coordinate[label=below:$c$] (J) at (0.7,0.6);
\draw (A) -- (B) -- (C) -- (D) -- (E) -- (F)--(G)--(A);
\draw (A) -- (D);
\draw (A) -- (F);
\draw (A) -- (E);
\draw (D) -- (F);
[/TIKZ]
Let $P_1P_2=a,\,P_1P_3=b,\,P_1P_4=c$. By the Ptolomeus thoerem for the quadrangle $P_1P_3P_4P_5$ it follows that $ab+ac=bc$, i.e. $\dfrac{a}{b}+\dfrac{a}{c}=1$. Since $\triangle P_1P_2P_3\equiv \triangle Q_1Q_2Q_3$, then $\dfrac{Q_1Q_2}{Q_1Q_3}=\dfrac{a}{b}$ and hence $Q_1Q_2=\dfrac{a^2}{b}$.

Analogously $R_1R_2=\dfrac{a^2}{c}$. Therefore, $\dfrac{S_Q+S_R}{S_P}=\dfrac{a^2}{b}+\dfrac{a^2}{c}$. Then $\dfrac{a^2}{b}+\dfrac{a^2}{c}>\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{a}{c}\right)^2=\dfrac{1}{2}$ (equality is not possible because $\dfrac{a}{b}\ne\dfrac{a}{c}$.

On the other hand

$\dfrac{a^2}{b^2}+\dfrac{a^2}{c^2}=\left(\dfrac{a}{b}+\dfrac{a}{c}\right)^2-\dfrac{2a^2}{bc}=1-\dfrac{2a^2}{bc}$---(1)

By the Sine theorem, we get

$\dfrac{a^2}{bc}=\dfrac{\sin^2 \dfrac{\pi}{7}}{\sin^2 \dfrac{\pi}{7}\sin^2 \dfrac{4\pi}{7}}=\dfrac{1}{4\cos\dfrac{2\pi}{7}\left(1+\cos\dfrac{2\pi}{7}\right)}$

Since $\cos\dfrac{2\pi}{7}<\cos \dfrac{\pi}{4}=\dfrac{\sqrt{2}}{2}$, then $\dfrac{a^2}{bc}>\dfrac{1}{4\dfrac{\sqrt{2}}{2}\left(1+\dfrac{\sqrt{2}}{2}\right)}=\sqrt{2}-1$. From here and from (1), we get the right hand side inequality of the problem.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
991
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K