Hess Law: Molar Enthelpy Change for Decomposition

Click For Summary
SUMMARY

The discussion focuses on calculating the molar enthalpy change for the decomposition of sodium hydrogen carbonate (NaHCO3) into sodium carbonate (Na2CO3), carbon dioxide (CO2), and water (H2O). The reactions involved are: 2NaHCO3 -> Na2CO3 + CO2 + H2O, NaHCO3 + HCl -> NaCl + CO2 + H2O, and Na2CO3 + HCl -> 2NaCl + CO2 + H2O. The calculated heat for NaHCO3 was -422.87 J, while for Na2CO3 it was +126.71 J. The final enthalpy change was determined to be -0.971 kJ, but the molar enthalpy change must be calculated by converting the mass of reactants to moles before subtraction.

PREREQUISITES
  • Understanding of chemical reactions and stoichiometry
  • Knowledge of thermochemistry concepts, particularly enthalpy
  • Familiarity with specific heat capacity calculations
  • Experience with molar conversions in chemistry
NEXT STEPS
  • Learn how to calculate molar enthalpy changes using Hess's Law
  • Study the principles of calorimetry and heat transfer in chemical reactions
  • Explore the concept of reaction enthalpies and their measurement techniques
  • Investigate the effects of temperature changes on reaction equilibria
USEFUL FOR

Chemistry students, educators, and researchers interested in thermochemical calculations and the application of Hess's Law in determining enthalpy changes for chemical reactions.

Tomtom
Messages
44
Reaction score
0

Homework Statement


This is for a chemistry report. This is the task:
"Determine the molar enthalpy change for the decomposition of sodium hydrogen carbonate into sodium carbonate, CO(2) and water.
2NaHCO(3) -> Na(2)CO(3) + CO(2) + H(2)O
This enthalpy change cannot be measured directly".

Instead, we reacted NaHCO(3) and Na(2)CO(3) in separate containers with HCL (in excess (100 mL), about 1M).

We measured the temperature changes, and the masses of each solid/liquid.

For the NaHCO(3) reaction:
Mass(NaHCO(3)): 0.001021 kg ± 0.000001 kg
Mass(HCL): 0.100 ± 0.001 kg
Change in T = 1 K

For the Na(2)CO(3) reaction:
Mass(Na(2)CO(3)): 0.000905 kg ± 0.000001 kg
Mass(HCL): 0.100 ± 0.001 kg
Change in T = -0.3 K

Homework Equations


Nr 1: 2NaHCO(3) -> Na(2)CO(3) + CO(2) + H(2)O
Nr 2: NaHCO(3) + HCl -> NaCL + CO(2) + H(2)O
Nr 3: Na(2)CO(3) + HCl -> 2NaCL + CO(2) + H(2)O

Note: By multiplying equation 2 by two, reversing equation 3, and then adding them together, we get equation 1. This has to be done to the enthalpies I calculate in Part 3, too.

The Attempt at a Solution


My biggest problem is figuring out how to find the Molar Delta H in kJ/mol. By doing the following, I can calculate the approximate Delta H (only in kJ) for reaction 1:

Following the equation of Heat = Mass * Specific Heat (c) * Delta T, we get:

(Note, here I add the two masses of HCl and the solids, and then use the specific heat of water. I understand this holds quite a large uncertainty. If anybody has a better idea, please say so. I am also really unsure on what I do after calculating the heat, ie. when I invert the sign of the heat form + to - and vica versa. Is this correct?)

For NaHCO(3):
Mass = 0.101021 kg
Specific Heat (water) 4186 J/(kg * K)
Delta T = 1 K

Heat = 422.87 J. As this is an exothermic reaction, it becomes -422.87 J

For Na(2)CO(3):
Mass = 0.100905 kg
Delta T = -0.3 K

Heat = -126.71 J. As this is an endothermic reaction, it becomes +126.71 J.

Then, by doing the same to these numbers as is mentioned in Part 2 (the reactions), I end up with (-422.87 * 2) + (126.71*-1) = -970.71 J = -0.971 kJ!

But this however, is just the enthalpy change for the reaction. Not the molar enthalpy change...
Any comments on this would be absolutely wonderful, and greatly appreciated!
 
Physics news on Phys.org
The units for molar enthalpy change are kJ/mol. You have the KJ part for a reaction containing 0.001021 kg of NaHCO3. (the reaction where the delta T was 1K, -422.87J) Convert this to moles and you have the molar enthalpy of that part.
You have the KJ part for a reaction consisting of 0.100905 kg of Na2CO3. (the reaction where delta T was -0.3K, 126.71J) Convert this to moles and you have the molar enthalpy of that part.

ONLY THEN CAN YOU SUBTRACT THE ENTHALPIES!

It doesn't do you any good to subtract the enthalpies from two reactions that contain different amounts of materials (as you have done in your OP).
I also assume that the CO2 gas was in thermal equilibrium with the solution before it bubbled away. That is, the evolved CO2 didn't carry away any heat energy ... You have also confounded the heats of reaction with the heats of solution. (a minor point)
 
Thanks! I believe I've got it now. :)

Anyway, it'll have to wait. I'm off to Kaliningrad in Russia with class now.

Me and a couple of friends talked a bit, but your comment really cleared things up. Thank you very much!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
8K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K