- #1

- 39

- 0

## Main Question or Discussion Point

Hi,

I want to show that the set of boundary points on a manifold with boundary is well defined, i.e the image of a point on a manifold with boundary can not be both the interior point and boundary point on upper half space. To do this, it is enough to show that R^n can be homeomorphic to upper half space. How can i show this fact?

Best regards

I want to show that the set of boundary points on a manifold with boundary is well defined, i.e the image of a point on a manifold with boundary can not be both the interior point and boundary point on upper half space. To do this, it is enough to show that R^n can be homeomorphic to upper half space. How can i show this fact?

Best regards