Higgs field and nuclear reactions

Click For Summary
SUMMARY

The discussion centers on the relationship between the Higgs field and nuclear fusion reactions, specifically addressing the conversion of mass into energy. Participants clarify that the Higgs field does not play a significant role in fusion processes, as the mass involved is primarily due to binding energy rather than the mass imparted by the Higgs mechanism. The mass of a system remains conserved during these reactions, and the majority of mass in matter is generated by strong interactions rather than the Higgs field. The temperature of fusion reactions is also noted to be far below that required for significant Higgs field interactions.

PREREQUISITES
  • Understanding of nuclear fusion processes and binding energy
  • Familiarity with the Higgs mechanism and its role in particle mass
  • Knowledge of particle physics concepts such as mass-energy equivalence
  • Basic principles of quantum field theory, particularly regarding fields and excitations
NEXT STEPS
  • Research the role of the Higgs field in particle physics and its impact on mass generation
  • Explore the concept of binding energy in nuclear reactions and its implications for mass defects
  • Study the strong interaction and its contribution to the mass of composite particles
  • Investigate the conditions necessary for electroweak symmetry breaking and its relevance to the Higgs field
USEFUL FOR

Students and enthusiasts of particle physics, nuclear physicists, and anyone interested in the fundamental mechanisms of mass and energy conversion in nuclear reactions.

Andrewtv848
Messages
16
Reaction score
1
TL;DR
What happens to the higgs field when say a fusion reaction occurs.
What happens to the higgs field when say a fusion reaction occurs. Like if mass is converted into energy and the higgs field gives a particle mass what happens to higgs field. I doubt this, but is the higgs field the mechanism that converts mass into gamma rays. Go easy on me I only have a high school degree.
 
Physics news on Phys.org
Andrewtv848 said:
I doubt this, but is the higgs field the mechanism that converts mass into gamma rays.
I think the conversion of one particle into another is a product of whichever fields the particles are excitations of. In other words, an electron-positron annihilation into gamma rays involves the electron-positron field (they are excitations of the same field) and the electromagnetic field. I don't think the Higgs field is involved.

Andrewtv848 said:
What happens to the higgs field when say a fusion reaction occurs. Like if mass is converted into energy and the higgs field gives a particle mass what happens to higgs field.
Mostly nothing as far as my limited understanding tells me. The mass of the system of fuel particles is conserved and is equal to the mass of the system of product particles and radiation. I don't believe the Higgs field has anything to do with this process.

Note that mass-energy conversion is somewhat more complicated and nuanced than you might think. Consider the example I gave above of an electron-positron pair annihilating into two photons. It is true that both the electron and positron have mass while the photon doesn't. However, a system of particles, including systems of photons, have mass. If we were to put the electron and positron into a box that can contain any type of particle, including all photons, and let them annihilate then we would find that the box has the same mass both before and after the annihilation.

As always, someone correct me if I'm wrong.
 
Andrewtv848 said:
What happens to the higgs field when say a fusion reaction occurs.
Nothing. The temperature of fusion reactions is far below the temperature of electroweak symmetry breaking, which is the temperature you need to reach before any significant interactions involving the Higgs field occur. Compare, for example, the temperature inside a fusion reactor with the temperature inside the LHC.
 
  • Like
Likes   Reactions: vanhees71
Andrewtv848 said:
if mass is converted into energy and the higgs field gives a particle mass what happens to higgs field.
You are talking about two different kinds of mass here.

The "mass" that is converted to energy in fusion reactions is the total mass of a composite bound system--more precisely, the portion of that total mass that represents binding energy (the energy that had to be given up by the system to become bound).

The "mass" that the Higgs field gives to particles is the invariant mass of the individual particles.
 
  • Like
Likes   Reactions: vanhees71
Drakkith said:
The mass of the system of fuel particles is conserved and is equal to the mass of the system of product particles and radiation.
This is not correct. For example, add up the mass of two deuterium nuclei and compare it to the mass of a helium-4 nucleus. The latter is smaller.
 
  • Like
Likes   Reactions: vanhees71
PeterDonis said:
This is not correct. For example, add up the mass of two deuterium nuclei and compare it to the mass of a helium-4 nucleus. The latter is smaller.
Sure. My point was that the mass of the system was the same, which would include the helium-4 as well as any radiation, neutrinos, kinetic energy of the products, etc.
 
  • Like
Likes   Reactions: vanhees71 and Dale
Drakkith said:
My point was that the mass of the system was the same, which would include the helium-4 as well as any radiation, neutrinos, kinetic energy of the products, etc.
Ah, ok. I didn't read carefully enough.
 
  • Like
Likes   Reactions: vanhees71
One should also be aware that only a few percent of the mass of the matter around us is due to the Higgs mechanism, i.e., the Yukawa coupling of the quarks and leptons to the Higgs field and due to its non-vanishing vacuum-expectation value. The bulk rest of the mass is dynamically created by the strong interaction, mostly due to the "trace anomaly", i.e., the anomalous breaking of the approximate scale invariance of the strong interaction and a bit from the spontaneous breaking of the approximate chiral symmetry in the light-quark sector of QCD.

In fusion the involved binding energies and corresponding "mass defects" are due to the strong interaction too.
 
  • Like
Likes   Reactions: Drakkith

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 3 ·
Replies
3
Views
819
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
57
Views
7K