Higgs field and nuclear reactions

Click For Summary

Discussion Overview

The discussion centers on the relationship between the Higgs field and nuclear reactions, particularly fusion. Participants explore how mass conversion during these reactions interacts with the Higgs field and the nature of mass itself, including distinctions between different types of mass and energy transformations.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant questions the role of the Higgs field in fusion reactions, wondering if it is involved in converting mass into gamma rays.
  • Another participant suggests that particle conversion is related to the fields the particles are excitations of, arguing that the Higgs field does not play a role in processes like electron-positron annihilation into gamma rays.
  • It is noted that the temperature of fusion reactions is significantly lower than that required for electroweak symmetry breaking, implying minimal interaction with the Higgs field during fusion.
  • A distinction is made between the mass converted to energy in fusion (binding energy of a composite system) and the invariant mass provided by the Higgs field to individual particles.
  • One participant challenges the claim that the mass of the system is conserved, using the example of deuterium nuclei versus helium-4 nucleus to illustrate mass differences post-reaction.
  • Another participant clarifies that the mass of the system includes all products of the reaction, including radiation and kinetic energy, suggesting a broader view of mass conservation.
  • A later contribution highlights that only a small fraction of the mass of matter is due to the Higgs mechanism, with most mass arising from strong interactions and binding energies in nuclear processes.

Areas of Agreement / Disagreement

Participants express differing views on the involvement of the Higgs field in nuclear reactions and the nature of mass conservation, indicating that multiple competing perspectives remain without consensus.

Contextual Notes

Participants acknowledge the complexity of mass-energy conversion and the nuances involved in defining and measuring mass in different contexts, particularly in relation to binding energy and the contributions of various interactions.

Andrewtv848
Messages
16
Reaction score
1
TL;DR
What happens to the higgs field when say a fusion reaction occurs.
What happens to the higgs field when say a fusion reaction occurs. Like if mass is converted into energy and the higgs field gives a particle mass what happens to higgs field. I doubt this, but is the higgs field the mechanism that converts mass into gamma rays. Go easy on me I only have a high school degree.
 
Physics news on Phys.org
Andrewtv848 said:
I doubt this, but is the higgs field the mechanism that converts mass into gamma rays.
I think the conversion of one particle into another is a product of whichever fields the particles are excitations of. In other words, an electron-positron annihilation into gamma rays involves the electron-positron field (they are excitations of the same field) and the electromagnetic field. I don't think the Higgs field is involved.

Andrewtv848 said:
What happens to the higgs field when say a fusion reaction occurs. Like if mass is converted into energy and the higgs field gives a particle mass what happens to higgs field.
Mostly nothing as far as my limited understanding tells me. The mass of the system of fuel particles is conserved and is equal to the mass of the system of product particles and radiation. I don't believe the Higgs field has anything to do with this process.

Note that mass-energy conversion is somewhat more complicated and nuanced than you might think. Consider the example I gave above of an electron-positron pair annihilating into two photons. It is true that both the electron and positron have mass while the photon doesn't. However, a system of particles, including systems of photons, have mass. If we were to put the electron and positron into a box that can contain any type of particle, including all photons, and let them annihilate then we would find that the box has the same mass both before and after the annihilation.

As always, someone correct me if I'm wrong.
 
Andrewtv848 said:
What happens to the higgs field when say a fusion reaction occurs.
Nothing. The temperature of fusion reactions is far below the temperature of electroweak symmetry breaking, which is the temperature you need to reach before any significant interactions involving the Higgs field occur. Compare, for example, the temperature inside a fusion reactor with the temperature inside the LHC.
 
  • Like
Likes   Reactions: vanhees71
Andrewtv848 said:
if mass is converted into energy and the higgs field gives a particle mass what happens to higgs field.
You are talking about two different kinds of mass here.

The "mass" that is converted to energy in fusion reactions is the total mass of a composite bound system--more precisely, the portion of that total mass that represents binding energy (the energy that had to be given up by the system to become bound).

The "mass" that the Higgs field gives to particles is the invariant mass of the individual particles.
 
  • Like
Likes   Reactions: vanhees71
Drakkith said:
The mass of the system of fuel particles is conserved and is equal to the mass of the system of product particles and radiation.
This is not correct. For example, add up the mass of two deuterium nuclei and compare it to the mass of a helium-4 nucleus. The latter is smaller.
 
  • Like
Likes   Reactions: vanhees71
PeterDonis said:
This is not correct. For example, add up the mass of two deuterium nuclei and compare it to the mass of a helium-4 nucleus. The latter is smaller.
Sure. My point was that the mass of the system was the same, which would include the helium-4 as well as any radiation, neutrinos, kinetic energy of the products, etc.
 
  • Like
Likes   Reactions: vanhees71 and Dale
Drakkith said:
My point was that the mass of the system was the same, which would include the helium-4 as well as any radiation, neutrinos, kinetic energy of the products, etc.
Ah, ok. I didn't read carefully enough.
 
  • Like
Likes   Reactions: vanhees71
One should also be aware that only a few percent of the mass of the matter around us is due to the Higgs mechanism, i.e., the Yukawa coupling of the quarks and leptons to the Higgs field and due to its non-vanishing vacuum-expectation value. The bulk rest of the mass is dynamically created by the strong interaction, mostly due to the "trace anomaly", i.e., the anomalous breaking of the approximate scale invariance of the strong interaction and a bit from the spontaneous breaking of the approximate chiral symmetry in the light-quark sector of QCD.

In fusion the involved binding energies and corresponding "mass defects" are due to the strong interaction too.
 
  • Like
Likes   Reactions: Drakkith

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 3 ·
Replies
3
Views
986
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K