Hilbert spaces and kets "over" manifolds

Click For Summary
SUMMARY

This discussion focuses on the construction of Hilbert spaces over manifolds, particularly in the context of quantum mechanics (QM) and curved spacetime. Participants explore the feasibility of defining square integrability and inner products using volume integrals on manifolds, asserting that these concepts are coordinate-independent. The conversation also delves into the challenges of defining base kets and self-adjoint position operators in a rigorous manner, referencing key texts such as "Quantum Mechanics" by Albert Messiah and "Quantum Fields on Curved Space" by Birrell & Davies. The need for a more rigorous treatment, possibly involving Rigged Hilbert spaces, is acknowledged.

PREREQUISITES
  • Understanding of Hilbert spaces and their properties
  • Familiarity with quantum mechanics, particularly the role of kets and operators
  • Knowledge of manifolds and their mathematical structures
  • Basic concepts of distribution theory and Rigged Hilbert spaces
NEXT STEPS
  • Study the construction of Rigged Hilbert spaces for a rigorous approach to quantum mechanics
  • Investigate the implications of Bogoliubov transformations in quantum field theory
  • Learn about the position operator in quantum mechanics and its definition in various coordinate systems
  • Explore the mathematical foundations of quantum mechanics on curved manifolds
USEFUL FOR

Physicists, mathematicians, and researchers interested in quantum mechanics, particularly those focusing on the mathematical foundations of quantum theory in curved spacetime and manifold theory.

andresB
Messages
625
Reaction score
374
Background:
One can construct a Hilbert space "over" ##\mathbb{R}^{3}## by considering the set of square integrable functions ##\int_{\mathbb{R}^{3}}\left|\psi(\mathbf{r})\right|^{2}<\infty##. That's what is done in QM, and there, even if they are not normalizable, to every ##\mathbf{r}\in\mathbb{R}^{3}## we can asign a base ket ##\left|\mathbf{r}\right\rangle ## so that vectors in the Hilbert space can be written as ##\left|\psi\right\rangle =\int_{\mathbb{R}^{3}}\left\langle \mathbf{r}\right|\left.\psi\right\rangle \left|\mathbf{r}\right\rangle d\mathbf{r}=\int_{\mathbb{R}^{3}}\psi(\mathbf{r})\left|\mathbf{r}\right\rangle d\mathbf{r}##.

This can be extended trivially to any ##\mathbb{R}^{3n}## for a collection of (non-identical) particles. It can also be done for the tangent bundle of ##\mathbb{R}^{3}## since the tanget bundle can be identified with ##\mathbb{R}^{6}##.

Actual Question:
On a general manifold, I don't see a reason why volume integral can't be used to define square integrability and inner products so a Hilbert space can be build. Moreover, those concepts are coordinate independent.

But what about the base kets? can a non-normalizable ket (modulo a phase) be defined for each point on the manifold so that every element of the Hilbert space can be written as a superposition of the base kets? If so, I can't think on how to write the base kets in a coordinate-free way.

I suppose this have to be a question people have considered (and answered) already. QM in curved space time is a thing, after all. I'm particularly interested on Hilbert spaces "over" tangent bundles.
 
Physics news on Phys.org
Even for ##\mathbb R^3##, to make it rigorous needs more work. The functions ## |r\rangle## are not square integrable. You need a bigger space of distributions for that, or the usual Gelfand's triples. All that extends to manifolds.
 
Indeed. I'm aware of the construction of Rigged Hilbert spaces, though at the moment I'm ok with a less rigorous treatment.

Another question: It is even possible to define a self-adjoint position operator over general manifolds?
 
andresB said:
Indeed. I'm aware of the construction of Rigged Hilbert spaces, though at the moment I'm ok with a less rigorous treatment.

Another question: It is even possible to define a self-adjoint position operator over general manifolds?
How is it defined in ##\mathbb R^3##?
 
martinbn said:
How is it defined in ##\mathbb R^3##?
For a standard construction you can check Quantum Mechanics by Albert Messiah, sections V.8, VII.13 and VIII.6. But I think you are already familiar with it.
 
andresB said:
On a general manifold, I don't see a reason why volume integral can't be used to define square integrability and inner products so a Hilbert space can be build. Moreover, those concepts are coordinate independent.

But what about the base kets? can a non-normalizable ket (modulo a phase) be defined for each point on the manifold so that every element of the Hilbert space can be written as a superposition of the base kets? If so, I can't think on how to write the base kets in a coordinate-free way.

I suppose this have to be a question people have considered (and answered) already. QM in curved space time is a thing, after all. I'm particularly interested on Hilbert spaces "over" tangent bundles.
Try Birrell & Davies, "Quantum Fields on Curved Space". The real problem is that the Hilbert space you might construct at one spacetime point is unitarily inequivalent to another at an infinitesimally nearby point. (If you're not familiar with the notion of unitary inequivalence, Bogoliubov transformations, and all that, try Umezawa's "Advanced Field Theory".)
 
  • Informative
Likes   Reactions: andresB
andresB said:
For a standard construction you can check Quantum Mechanics by Albert Messiah, sections V.8, VII.13 and VIII.6. But I think you are already familiar with it.
I have seen it, but it is usually very non rigorus coordinate and basis dependent, so it isn't clear to me what the construction is.
 
martinbn said:
I have seen it, but it is usually very non rigorus coordinate and basis dependent, so it isn't clear to me what the construction is.
Well, you are correct. Mathematical rigour is most usually handwaved away. Though textbooks tend to comfort the reader by stating that rigorous treatments do exist. Messiah's book has a small section on distribution theory.

Not sure what you mean by basis dependent, though.
 
strangerep said:
Try Birrell & Davies, "Quantum Fields on Curved Space". The real problem is that the Hilbert space you might construct at one spacetime point is unitarily inequivalent to another at an infinitesimally nearby point. (If you're not familiar with the notion of unitary inequivalence, Bogoliubov transformations, and all that, try Umezawa's "Advanced Field Theory".)
Thanks for the reference.

It seems that relativistic considerations create a lot of complications. After a first quick read I think, but I'm not sure, that not having time as a coordinate would make things easier.

I mention it because my interest arises after reading about non-relativistic wave mechanics on curved surfaces https://arxiv.org/abs/1602.00528. And while the wave mechanics formulation has no problem, I wonder if the entire Dirac formalism can be constructed on the surface.
 
  • #10
andresB said:
Well, you are correct. Mathematical rigour is most usually handwaved away. Though textbooks tend to comfort the reader by stating that rigorous treatments do exist. Messiah's book has a small section on distribution theory.

Not sure what you mean by basis dependent, though.
What I have seen about the position operator is that one first defines the position kets ##|x\rangle##, and then the operator through that "basis", defining it to be the operator having these as eigenvectors with the coressponding eignevalues. By the way I couldn't find the part in Messiah, that is specific for the position operator.

ps I am asking because your question is interesting and I would like to learn more, not because I will be able to give you an answer.
 
  • #11
martinbn said:
What I have seen about the position operator is that one first defines the position kets ##|x\rangle##, and then the operator through that "basis", defining it to be the operator having these as eigenvectors with the coressponding eignevalues. By the way I couldn't find the part in Messiah, that is specific for the position operator.

ps I am asking because your question is interesting and I would like to learn more, not because I will be able to give you an answer.

There are several sections dedicated to the formalism of QM in Messiah. Section VIII.6 (of my Dover version, at least) deals with the position operator.

But it is as you say. The process is more or less the following
(1) Define/postulate a complete set of commuting observables. Ignoring spin, the components of the position operator are a complete set.
(2) Define commuting relations with the other observables of the theory. Messiah only deals with momentum.
(3) Find the spectrum of the commuting observables
(4) The Hilbert space is defined as the space of all the linear combination of the eigenvectors of the commuting observables.
(5) Use commutation relations to find the spectrum of all the observables of the theory
(5) check internal consistency ==============
Now, on a general manifold I'm unsure on how to proceed from the very first step. But assuming I can define a position operator on a local chart just as usual, then the second step seems problematic. Usually, the spectrum of the position operator is found using its commuting relation with a self-adjoint momentum operator. But in general coordinates this seems complicated https://aapt.scitation.org/doi/abs/10.1119/1.12675?journalCode=ajp
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 59 ·
2
Replies
59
Views
5K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 18 ·
Replies
18
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K