In W. Hoeffding's 1963 paper(adsbygoogle = window.adsbygoogle || []).push({}); ^{*}he gives the well known inequality:

[itex]P(\bar{x}-\mathrm{E}[x_i] \geq t) \leq \exp(-2t^2n) \ \ \ \ \ \ (1)[/itex],

where [itex]\bar{x} = \frac{1}{n}\sum_{i=1}^nx_i[/itex], [itex]x_i\in[0,1][/itex]. [itex]x_i[/itex]'s are independent.

Following this theorem he gives a corollary for the difference of two sample means as:

[itex]P(\bar{x}-\bar{y}-(\mathrm{E}[x_i] - \mathrm{E}[y_k]) \geq t) \leq \exp(\frac{-2t^2}{m^{-1}+n^{-1}}) \ \ \ \ \ \ (2)[/itex],

where [itex]\bar{x} = \frac{1}{n}\sum_{i=1}^nx_i[/itex], [itex]\bar{y} = \frac{1}{m}\sum_{k=1}^my_k[/itex], [itex]x_i,y_k\in[0,1][/itex]. [itex]x_i[/itex]'s and [itex]y_k[/itex]'s are independent.

My question is: How does (2) follow from (1)?

-Jan

^{*}http://www.csee.umbc.edu/~lomonaco/f08/643/hwk643/Hoeffding.pdf (equations (2.6) and (2.7))

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Hoeffding inequality for the difference of two sample means?

**Physics Forums | Science Articles, Homework Help, Discussion**