How Are Beam Support Reactions Calculated?

Click For Summary

Homework Help Overview

The discussion revolves around calculating beam support reactions, specifically focusing on determining the center of gravity and the resultant forces acting on a beam with various load distributions.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • The original poster attempts to calculate the support reactions using their own method, but expresses confusion regarding the official solution's approach to the center of gravity. Other participants question the accuracy of the centroid calculation and suggest that the weight distribution may affect the location of the centroid.

Discussion Status

Participants are actively engaging with the problem, with some offering insights into the calculations and questioning the assumptions made about the centroid's location. There is no explicit consensus on the correct approach, but guidance is being provided regarding the interpretation of the centroid and load distribution.

Contextual Notes

There seems to be a focus on the geometry of the beam and the distribution of loads, with specific reference to triangular and rectangular areas affecting the centroid calculations. The original poster's calculations and the official solution present different interpretations of the beam's loading conditions.

Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
For the given loads, determine the reactions at the beam supports.
Relevant Equations
##\sum F=0, \sum M=0##
Figure:
93DC4582-E535-4AAA-852A-3B4990DB20BB.jpeg


My attempt at a solution:
CFB2307A-F404-4DA9-B71D-9CE894D2AA87.jpeg

We know that ##Q=A_T##
We calculate ##Q##:
$$Q=\dfrac{3\cdot 480}{2}+\dfrac{600\cdot 6}{2}+600\cdot 2=3720\, \textrm{lb}$$
Then we look for the point ##\overline{x}## of the centre of gravity:
$$\overline{x_1}=1\, \textrm{ft},\quad \overline{x_2}=3+\dfrac63=5\, \textrm{ft},\quad \overline{x_3}=3+6+\dfrac22=10\, \textrm{ft}$$
$$\overline{x}=\dfrac{\sum x_iQ_i}{Q}=5,84\, \textrm{ft}$$
$$\sum Fx=\boxed{Bx=0}$$
$$\sum Fy=0=By+C-Q=0\rightarrow \boxed{By=1959,2\, \textrm{lb}}$$
$$\sum M_B=2,84Q-6C=0\rightarrow \boxed{C=1760,8\, \textrm{lb}}$$

Would this not be the case in this one? It's just that the solution tells me the following and I don't get that centre of gravity in area 2:
Official solution:
DBC24C39-E30A-46B8-9ACA-FEC836A6E4E1.jpeg

We have
$$R_I=\dfrac12 (3\, \textrm{ft})(480\, \textrm{lb}/\textrm{ft})=720\, \textrm{lb}$$
$$R_{II}=\dfrac12 (6\, \textrm{ft})(600\, \textrm{lb}/\textrm{ft})=1800\, \textrm{lb}$$
$$R_{III}=(2\, \textrm{ft})(600\, \textrm{lb}/\textrm{ft})=1200\, \textrm{lb}$$
Then
$$\xrightarrow{+}\sum F_x=0:\,\, B_x=0$$
$$\sum M_B=0:\,\, (2\, \textrm{ft})(720\, \textrm{lb})-(4\, \textrm{ft})(1800\, \textrm{lb})+(6\, \textrm{ft})C_y-(7\, \textrm{ft})(1200\, \textrm{lb})=0$$
$$C_y=2360\, \textrm{lb}\qquad \mathbf{C}=2360\, \textrm{lb} \uparrow$$
or
$$\sum F_y=0:\,\, -720\, \textrm{lb}+B_y-1800\, \textrm{lb}+2360\, \textrm{lb}-1200\, \textrm{lb}=0$$
$$B_y=1360\, \textrm{lb}\qquad \mathbf{B}=1360\, \textrm{lb}\uparrow$$
 
Physics news on Phys.org
The effective loads are applied at the centroids of the areas. Check ##x_2##
 
Last edited:
  • Like
Likes   Reactions: Lnewqban
The location that you have calculated for the centroid of A2 is not correct.
Much of the weight is located towards the right side of the 11-foot beam, therefore the calculated concentrated total weight should be located far from 5.84 feet from the left end.
 
Of course, I have taken it as if the triangle is rotated. It should be ##2/3##
 
  • Like
Likes   Reactions: Lnewqban

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
Replies
9
Views
2K
Replies
1
Views
6K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 6 ·
Replies
6
Views
8K
Replies
1
Views
3K
  • · Replies 104 ·
4
Replies
104
Views
17K
  • · Replies 52 ·
2
Replies
52
Views
13K
  • · Replies 1 ·
Replies
1
Views
3K