How Are Beam Support Reactions Calculated?

Click For Summary
Beam support reactions are calculated by determining the total load and the center of gravity of the beam's distributed loads. The total load, Q, is derived from the contributions of various sections, resulting in a value of 3720 lb. The center of gravity is then found to be at 5.84 ft, but this calculation is disputed as it does not accurately reflect the distribution of weight, particularly in area 2. The official solution provides alternative calculations for the reactions at supports, yielding values of 2360 lb and 1360 lb for the vertical reactions at supports C and B, respectively. The discussion emphasizes the importance of correctly identifying centroids and the distribution of loads for accurate calculations.
Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
For the given loads, determine the reactions at the beam supports.
Relevant Equations
##\sum F=0, \sum M=0##
Figure:
93DC4582-E535-4AAA-852A-3B4990DB20BB.jpeg


My attempt at a solution:
CFB2307A-F404-4DA9-B71D-9CE894D2AA87.jpeg

We know that ##Q=A_T##
We calculate ##Q##:
$$Q=\dfrac{3\cdot 480}{2}+\dfrac{600\cdot 6}{2}+600\cdot 2=3720\, \textrm{lb}$$
Then we look for the point ##\overline{x}## of the centre of gravity:
$$\overline{x_1}=1\, \textrm{ft},\quad \overline{x_2}=3+\dfrac63=5\, \textrm{ft},\quad \overline{x_3}=3+6+\dfrac22=10\, \textrm{ft}$$
$$\overline{x}=\dfrac{\sum x_iQ_i}{Q}=5,84\, \textrm{ft}$$
$$\sum Fx=\boxed{Bx=0}$$
$$\sum Fy=0=By+C-Q=0\rightarrow \boxed{By=1959,2\, \textrm{lb}}$$
$$\sum M_B=2,84Q-6C=0\rightarrow \boxed{C=1760,8\, \textrm{lb}}$$

Would this not be the case in this one? It's just that the solution tells me the following and I don't get that centre of gravity in area 2:
Official solution:
DBC24C39-E30A-46B8-9ACA-FEC836A6E4E1.jpeg

We have
$$R_I=\dfrac12 (3\, \textrm{ft})(480\, \textrm{lb}/\textrm{ft})=720\, \textrm{lb}$$
$$R_{II}=\dfrac12 (6\, \textrm{ft})(600\, \textrm{lb}/\textrm{ft})=1800\, \textrm{lb}$$
$$R_{III}=(2\, \textrm{ft})(600\, \textrm{lb}/\textrm{ft})=1200\, \textrm{lb}$$
Then
$$\xrightarrow{+}\sum F_x=0:\,\, B_x=0$$
$$\sum M_B=0:\,\, (2\, \textrm{ft})(720\, \textrm{lb})-(4\, \textrm{ft})(1800\, \textrm{lb})+(6\, \textrm{ft})C_y-(7\, \textrm{ft})(1200\, \textrm{lb})=0$$
$$C_y=2360\, \textrm{lb}\qquad \mathbf{C}=2360\, \textrm{lb} \uparrow$$
or
$$\sum F_y=0:\,\, -720\, \textrm{lb}+B_y-1800\, \textrm{lb}+2360\, \textrm{lb}-1200\, \textrm{lb}=0$$
$$B_y=1360\, \textrm{lb}\qquad \mathbf{B}=1360\, \textrm{lb}\uparrow$$
 
Physics news on Phys.org
The effective loads are applied at the centroids of the areas. Check ##x_2##
 
Last edited:
The location that you have calculated for the centroid of A2 is not correct.
Much of the weight is located towards the right side of the 11-foot beam, therefore the calculated concentrated total weight should be located far from 5.84 feet from the left end.
 
Of course, I have taken it as if the triangle is rotated. It should be ##2/3##
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
Replies
9
Views
2K
Replies
1
Views
6K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 6 ·
Replies
6
Views
8K
Replies
1
Views
2K
  • · Replies 104 ·
4
Replies
104
Views
17K
  • · Replies 52 ·
2
Replies
52
Views
12K
Replies
1
Views
3K