How Are Beam Support Reactions Calculated?

AI Thread Summary
Beam support reactions are calculated by determining the total load and the center of gravity of the beam's distributed loads. The total load, Q, is derived from the contributions of various sections, resulting in a value of 3720 lb. The center of gravity is then found to be at 5.84 ft, but this calculation is disputed as it does not accurately reflect the distribution of weight, particularly in area 2. The official solution provides alternative calculations for the reactions at supports, yielding values of 2360 lb and 1360 lb for the vertical reactions at supports C and B, respectively. The discussion emphasizes the importance of correctly identifying centroids and the distribution of loads for accurate calculations.
Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
For the given loads, determine the reactions at the beam supports.
Relevant Equations
##\sum F=0, \sum M=0##
Figure:
93DC4582-E535-4AAA-852A-3B4990DB20BB.jpeg


My attempt at a solution:
CFB2307A-F404-4DA9-B71D-9CE894D2AA87.jpeg

We know that ##Q=A_T##
We calculate ##Q##:
$$Q=\dfrac{3\cdot 480}{2}+\dfrac{600\cdot 6}{2}+600\cdot 2=3720\, \textrm{lb}$$
Then we look for the point ##\overline{x}## of the centre of gravity:
$$\overline{x_1}=1\, \textrm{ft},\quad \overline{x_2}=3+\dfrac63=5\, \textrm{ft},\quad \overline{x_3}=3+6+\dfrac22=10\, \textrm{ft}$$
$$\overline{x}=\dfrac{\sum x_iQ_i}{Q}=5,84\, \textrm{ft}$$
$$\sum Fx=\boxed{Bx=0}$$
$$\sum Fy=0=By+C-Q=0\rightarrow \boxed{By=1959,2\, \textrm{lb}}$$
$$\sum M_B=2,84Q-6C=0\rightarrow \boxed{C=1760,8\, \textrm{lb}}$$

Would this not be the case in this one? It's just that the solution tells me the following and I don't get that centre of gravity in area 2:
Official solution:
DBC24C39-E30A-46B8-9ACA-FEC836A6E4E1.jpeg

We have
$$R_I=\dfrac12 (3\, \textrm{ft})(480\, \textrm{lb}/\textrm{ft})=720\, \textrm{lb}$$
$$R_{II}=\dfrac12 (6\, \textrm{ft})(600\, \textrm{lb}/\textrm{ft})=1800\, \textrm{lb}$$
$$R_{III}=(2\, \textrm{ft})(600\, \textrm{lb}/\textrm{ft})=1200\, \textrm{lb}$$
Then
$$\xrightarrow{+}\sum F_x=0:\,\, B_x=0$$
$$\sum M_B=0:\,\, (2\, \textrm{ft})(720\, \textrm{lb})-(4\, \textrm{ft})(1800\, \textrm{lb})+(6\, \textrm{ft})C_y-(7\, \textrm{ft})(1200\, \textrm{lb})=0$$
$$C_y=2360\, \textrm{lb}\qquad \mathbf{C}=2360\, \textrm{lb} \uparrow$$
or
$$\sum F_y=0:\,\, -720\, \textrm{lb}+B_y-1800\, \textrm{lb}+2360\, \textrm{lb}-1200\, \textrm{lb}=0$$
$$B_y=1360\, \textrm{lb}\qquad \mathbf{B}=1360\, \textrm{lb}\uparrow$$
 
Physics news on Phys.org
The effective loads are applied at the centroids of the areas. Check ##x_2##
 
Last edited:
The location that you have calculated for the centroid of A2 is not correct.
Much of the weight is located towards the right side of the 11-foot beam, therefore the calculated concentrated total weight should be located far from 5.84 feet from the left end.
 
Of course, I have taken it as if the triangle is rotated. It should be ##2/3##
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...

Similar threads

Back
Top