Ideas for problem #5:
Make the problem simpler: take B = identity map, so b =1, and take the constant a = 1, so we want to prove the map f taking x to x^2 + x, hits every point C with |C| ≤ 1/4, where |x^2| ≤ |x|^2.
Start with the case of the Banach space R, the real numbers, and see by calculus that f takes the interval [-1/2, 1/2] to the interval [1/4, 3/4]. One only needs evaluate the map on the endpoints -1/2 and 1/2 and use the intermediate value theorem.
Now take the case of Banach space R^2. This time we can use of course the winding number technique. Look at the image of the circle |x| = 1/2. The map x-->x^2, takes each point of the circle |x| = 1/2, to a point of length ≤ 1/4. Hence the sum f(x) = x + x^2 takes each point p of this circle, to a point of the disc of radius 1/4 centered at p.
Hence the line segment joining p to f(p) lies in the annulus between the circles of radii 1/4 and 1/2. Hence the homotopy t-->x + t.x^2, with 0 ≤t≤1, is a homotopy between the identity map and the map f, such that every point of the homotopy lies in the annulus mentioned above. Consequently the map f acting on the circle |x| = 1/2 has the same winding number as the identity map, namely one. Hence the map f surjects the disc |x| ≤ 1/2 onto (a set containing) the disc |x| ≤ 1/4.
Using homotopies of spheres, this argument should work in all finite dimensions. I.e. the map f surjects the ball |x| ≤ 1/2, onto the disc |x| ≤ 1/4, (and maybe more).
Now to progress to infinite dimensional Banach spaces, it seems we should use some argument for the inverse function theorem, or open mapping theorem. I.e. look at the proof of the inverse function theorem for Banach spaces and see what ball is guaranteed to be in the image.
Suggestion: Use the proof of the "surjective mapping theorem", attributed to Graves, in Lang Analysis II, p. 193. I.e. just as slightly perturbing the identity map leaves us with a map that is still locally a homeomorphism, so sightly perturbing a surjective continuous linear [hence open] map leaves us with a map that is still locally [open and?] surjective.
Graves' theorem:
http://www.heldermann-verlag.de/jca/jca03/jca03003.pdf
(iii) There exists a constant M such that for every y ∈ Y there exists x ∈ X with y = A(x)
and
∥ x ∥≤ M ∥ y ∥ .
Let us denote by Ba(x) the closed ball centered at x with radius a. Up to some minor adjustments in notation, the original formulation and proof of the Graves theorem are as follows.
Theorem 1.2. (Graves [12]). Let X, Y be Banach spaces and let f be a continuous functionfromXtoY definedinBε(0)forsomeε>0withf(0)=0. LetAbea continuous and linear operator from X onto Y and let M be the corresponding constant from Theorem 1.1 (iii). Suppose that there exists a constant δ < M −1 such that
∥ f(x1) − f(x2) − A(x1 − x2) ∥≤ δ ∥ x1 − x2 ∥ (1) whenever x1,x2 ∈ Bε(0). Then the equation y = f(x) has a solution x ∈ Bε(0) whenever
∥ y ∥≤ cε, where c = M−1 − δ.