How Are Euclidean Algorithm and Hensel's Lemma Applied to Congruences?

  • Context: Undergrad 
  • Thread starter Thread starter AHW
  • Start date Start date
  • Tags Tags
    Algorithm Euclidean
Click For Summary

Discussion Overview

The discussion revolves around the applications of the Euclidean Algorithm and Hensel's Lemma in solving congruences. Participants explore specific examples of congruences, the equivalence of solutions, and the implications of Hensel's Lemma in polynomial congruences.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant expresses confusion about the equivalence of congruences, specifically regarding the transformation of the equation 5x=1(16) to other moduli.
  • Another participant challenges the initial claim about congruences, providing a counterexample and clarifying the correct congruence relationships.
  • There is a discussion about the general solutions to the equation 3k-7n=1, with one participant noting that multiple integer solutions exist based on the values of k and n.
  • A participant shares their application of the Chinese Remainder Theorem to solve a system of linear congruences, but questions arise regarding the modulus of the final solution.
  • Clarifications are made regarding the uniqueness of solutions and the conditions under which certain congruences hold.
  • Another participant introduces a new question about Hensel's Lemma, seeking an explanation of its implications for lifting solutions of polynomial congruences.
  • There is a mention of the conditions under which Hensel's Lemma applies, specifically regarding the derivatives of polynomials and the uniqueness of residues.

Areas of Agreement / Disagreement

Participants exhibit disagreement regarding the equivalence of certain congruences and the interpretation of solutions. The discussion remains unresolved on some points, particularly concerning the application of Hensel's Lemma and the specifics of congruence transformations.

Contextual Notes

Some participants note the importance of understanding the general solutions to equations, especially in the context of positive integers versus general integer solutions. The discussion also highlights the need for clarity in the application of the Chinese Remainder Theorem and the conditions for Hensel's Lemma.

Who May Find This Useful

Readers interested in number theory, particularly those studying congruences, the Euclidean Algorithm, and polynomial equations, may find this discussion beneficial.

AHW
Messages
3
Reaction score
0
1)5x=1(16) is equivalent to x=5(6) is equivalent to x=1(2), x=2(3) <the equal sign here i mean congruence to>

i'm a bit confused about the equivalence...how this is so?

2)3k-7n=1, k,n integers
by using euclidean algorithm i got k=-2, n=-1. but the answer i got here is k=5, n=2
(the original question asked to solve x s.t x=1(3) and x=2(7) <the equal sign here i mean congruence to>)


any help appreciated..much thanks~
 
Physics news on Phys.org


AHW said:
1)5x=1(16) is equivalent to x=5(6) is equivalent to x=1(2), x=2(3) <the equal sign here i mean congruence to>

i'm a bit confused about the equivalence...how this is so?
I don't know what you are talking about. If you mean congruence modulo a number, then it simply isn't true. 5(13)= 65= 64+ 1 so x= 13 (mod 16). Since 13= 7+ 6, 13 is congruent to 7 (mod 6), not 5. It does happen that 13= 6(2)+ 1 so it is congruent to 1 (mod 2), but 13= 4(3)+ 1 so it is congruent to 1 (mod 3) not 2.

2)3k-7n=1, k,n integers
by using euclidean algorithm i got k=-2, n=-1. but the answer i got here is k=5, n=2
(the original question asked to solve x s.t x=1(3) and x=2(7) <the equal sign here i mean congruence to>)
Yes, if k= -2, n= -1 satisfy that equation. But if k= -2+ 7j and n= -1+ 3j, for any j, then 3k- 7n= 3(-2+ 7j)- 7(-1+ 3j)= -6- 21j+ 7- 21j= 1 because the "21j" te4rms cancel.

In particular, if you let j= 1, k= -2+ 7= 5 and n= -1+ 3= 2. Any of the numbers k= -2+ 7j and n= -1+ 3j will satisfy the equation but numbers "modulo p" are usually represented by the equivalent value between 0 and p- 1. Here those are 5 and 2.

any help appreciated..much thanks~
 
Last edited by a moderator:


Many thanks for the help~~

HallsofIvy said:
I don't know what you are talking about. If you mean congruence modulo a number, then it simply isn't true. 5(13)= 65= 64+ 1 so x= 13 (mod 16).

oops, have just realized I've got the question wrong. It should be 5x=1(6) instead of 5x=1(16).
okay, so you've found 13 is a solution of 5x=1(16), so x=13(16) simply means 13 is a solution of mod 16?

I have used the technique to help solving a system of linear congruences
x=0(2) x=0(3) x=1(5) x=6(7)
by using chinese remainder theorem
m=2x3x5x7=210
n1=210/2=105 105b1=1(2) > b1=1(2)
n2=210/3=70 70b2=1(3) > b2=1(3)
n3=210/5=42 42b3=1(5) > b3=3(5)
n4=210/7=30 30b4=1(7) > b4=4(7)

Xo = 105x1x0+70x1x0+42x3x1+30x4x6=846 = 6(mod 210)

but the answer is x=6(mod 420)
I don't understand why it's mod 420.
HallsofIvy said:
Yes, if k= -2, n= -1 satisfy that equation. But if k= -2+ 7j and n= -1+ 3j, for any j, then 3k- 7n= 3(-2+ 7j)- 7(-1+ 3j)= -6- 21j+ 7- 21j= 1 because the "21j" te4rms cancel.
If k and n are positive numbers, do we still need to find these general solutions (k= -2+ 7j and n= -1+ 3j)?
 
Last edited:


AHW said:
Many thanks for the help~~



oops, have just realized I've got the question wrong. It should be 5x=1(6) instead of 5x=1(16).
okay, so you've found 13 is a solution of 5x=1(16), so x=13(16) simply means 13 is a solution of mod 16?

I have used the technique to help solving a system of linear congruences
x=0(2) x=0(3) x=1(5) x=6(7)
by using chinese remainder theorem
m=2x3x5x7=210
n1=210/2=105 105b1=1(2) > b1=1(2)
n2=210/3=70 70b2=1(3) > b2=1(3)
n3=210/5=42 42b3=1(5) > b3=3(5)
n4=210/7=30 30b4=1(7) > b4=4(7)

Xo = 105x1x0+70x1x0+42x3x1+30x4x6=846 = 6(mod 210)
Here's how I would do that. x= 6 (mod 7) means that x= 7k+ 6 for some integer k. x= 1 (mod 5) means that x= 5j+ 1 for some integer j. Then 5j+ 1= 7k+ 6 or 5j- 7k= 5. Now 5(3)- 7(2)= 1 so 5(15)- 7(10)= 5 so one solution is j= 15, k= 10 and so the general solution is j= 15+ 7m, k= 10+ 5m. Since x= 7k+ 6, we now have that x= 7(10+ 5m)+ 6= 76+ 35m which is the same as saying x= 76 (mod 35). But 76= 2(35)+ 6 so this is the same as x= 6 (mod 35) or x= 35n+ 6 for some integer n.

x= 0 (mod 3) means x is a multiple of 3: x= 3p= 6+ 35n or 3p- 35n= 6. 12(3)- 35= 1 so 72(3)- 6(35)= 6. We must have p= 72+ 35q, n= 6+ 3r. Then x= 35n+ 6= 35(6+ 3r)+ 6= 216+ 105r= 6+ 2(105)+ 105r= 6+ 105(r+2) which we can write 6+ 105s

x= 0 (mod 2) means x is a multiple of 2: x= 2t= 6+ 105s so 2t- 105s= 6. Of course, 2(53)- 105(1)= 1 so 2(318)- 105(6)= 6. t= 318+ 105u= 3+ 315+ 105u= 3+ 105(u+ 3)= 3+ 105(v).
Since x= 2t, x= 6+ 210v for some integer v. That's exactly what you got!

(I essentially used the idea of the "Chinese remainder theorem" rather than just the result.)

but the answer is x=6 (mod 420)
I don't understand why it's mod 420.
You are right and the "answer" is wrong.

If x= 6+ 210n, then x/2= 3+ 105n, an integer: 6+210n is a multiple of 2; 6+ 210= 0 (mod 2).
If x= 6+ 210n, then x/3= 2+ 70n, and integer: 6+210n is a multiple of 3; 6+ 210= 0 (mod 3).
If x= 6+ 210n, then x/5= 1+ 42n with remainder 1: 6+210n is a multiple of 5 plus 1; 6+ 210= 1 (mod 5).
Because 7 does not divide 6 we need to look at x= (6+ 210)+ 210(n-1)= 216+ 210(n-1). Then x/7= 30+ 30(n-1)+ 6: 6+ 210n is a multiple of 7 plus 6; 6+ 210n= 6 (mod 7).

6+ any multiple of 210 satisfies the conditions of the problem: x= 6 (mod 210). because 420 is a multiple of 420, any number of the form x= 6 (mod 420) will satisfy the conditions but saying "x= 6 (mod 420)" misses the solution x= 216.

You are right, the "answer" is wrong.

If k and n are positive numbers, do we still need to find these general solutions (k= -2+ 7j and n= -1+ 3j)?
It depends on the exact statement of the problem. For example, "Diophantine" equations of this type often occur in puzzles where the solution are necessarily positive numbers. In that case, you would only need to give the positive solutions (and often both will be positive only for one value of j). But in general it is certainly a good idea to give the "general solution", giving all possible values that satisfy the equation.
 
Last edited by a moderator:


Thanks again~

I've got this new question about hensel's lemma. Hope you don't mind helping again. I've come across this version of hensel's lemma, but I just can't understand what it means. I know it can lift a solution of a polynomial congruence but can't see how things work out from the definition. Can you help to explain it in plain English? Thanks~

Let f be an integral polynomial. Suppose that f(a)=0 (mod p^j), and that p^t ll f'(a). Then if j >= 2t+1, it follows that:
1)whenever b=a (mod p^j-t), one has f(b)=f(a) (mod p^j) and p^t ll f'(b):
2)these exists a unique residue t(mod p) with the property that f(a+tp^j-t) = 0 (mod p^j+1).
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 2 ·
Replies
2
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 26 ·
Replies
26
Views
1K
Replies
1
Views
4K