We're not talking about a rotation, the question posed was, what happens to L under a translation?
Oh fair enough ... though if I measure angular momentum, then use identical apparatus in a different position (i.e. translated, but not rotated) on the same particles, doesn't that just give the same measurement? In fact, would we normally expect a mere translation of axis to change the projections of a vector? Wouldn't a rotation, instead, be more illustrative for OPs question? Or maybe I have the wrong question?
I thought the question was: "How can angular momentum be quantized?" ... which I happily interpreted as "What do we mean by 'angular momentum is quantized'?" ... which, admittedly, may not have been the interpretation intended. OP provided an example of how he may expect to change angular momentum... particularly in terms of how L is defined in relation to axes.
The z-axis projection of a "regular" vector depends on how we've drawn the axes after all.
I understood that the different axis were defined (in a meaningful way) by the
measuring apparatus.
eg. The Stern-Gerlach apparatus has an important axis, which gets called "z" a lot. The angular momentum is quantized with respect to this axis, no matter how the apparatus is oriented in space. You can put random x-y position particles (the beam) in with random orientation of spins and still get quantized results out.
I was guessing that this was the sort of thing OP was asking about.
So it seems reasonable to say that the angular momentum is said to be quantized because that is what we get when we measure it. It gets that way (the "how" part), regardless of orientation, because of the interaction with the measuring apparatus. We can (very accurately) account for this in the mathematics by considering superpositions of orthogonal angular momenta.
In a way, what OP seems to be wrestling with is a less obvious manifestation of "wave particle duality" ... the math is continuous but the resulting measurement is discrete. OR I have been overthinking this and looked for deep meaning where there is none ;)