How can I design a Foucault Pendulum for my university building?

AI Thread Summary
A Foucault pendulum is being proposed for installation in a university building, requiring design and cost projections. Collaboration with the architecture department is planned, but there are concerns about maintaining the pendulum's motion without disrupting its oscillation plane. Suggestions include using a magnetic drive system that detects the bob's position optically to regulate its swing. The Griffith Observatory's pendulum is cited as an example, which is manually started each day without an active drive. The discussion emphasizes the importance of minimizing external influences on the pendulum's motion for accuracy.
hacivat
Messages
28
Reaction score
3
TL;DR Summary
How to keep it going?
Hi guys,

I think I have persuaded the administration to install a Foucault pendulum in my university building where a high roof and open spaces are available. The thing is I have to project it with design, cost, etc. Those are domains which I don't have much expertise as a simple physicist. So I am planning to collaborate with architecture dept, etc. But, also I have to find a solution how to keep it going. I am pretty sure Foucault pendulums are not in mass production in the world. So I believe each system is unique in it own way. :confused:

So I would like to ask engineers around here about these kind of supporting systems which supplies energy to such systems. I have heard that those 20-30 m long Foucault pendulums are supported by "electromagnets from the top" as is mentioned in the video at the end of the message. But this also bugs me whether if it is going to mess up with its original motion where the oscillation plane rotates. Besides I have no idea what those support system looks like. So any kind of plan or source is appreciated on that...

Thanks in advance...

 
Engineering news on Phys.org
hacivat said:
But, also I have to find a solution how to keep it going.
I have seen a solution where the bob is driven magnetically from below. The drive coil is mounted in the floor with a vertical axis, below the bob, so it maintains oscillation without influencing the direction. I do not remember if the bob was just iron, or if it had a permanent magnet to react with the drive coil.

The bob position was detected optically as it passed over the coil. I believe the time to cross the optical detector was used to assess the amplitude of the swing, and so to regulate the drive.
 
The Griffith Observatory near Los Angeles, California has one. It is a 240 pound Brass or Bronze ball suspended from a bearing that does not rotate with the Earth. If a recall correctly from a long-ago visit, there in not an active drive, the pendulum is manually started each day.

Of the links I've looked at that mentioned the material, all stated Brass. At least one link noted the suspension was a stiff rod, not a cable.

One site mentioned that for accuracy and repeatability, the pendulum is not touched by hand. It is captured with a string, brought to the starting position, and given time to stop swaying.Then the string is then burned through to release it. This eliminates any asymmetric forces that may force an elliptical swing path.

Here is an article by the Smithsonian museum about their pendulum that mentions a magnetic drive. (they also give their phone number in case you want to pick their brain!)
https://www.si.edu/spotlight/foucault-pendulum

Try this search for many links:
https://www.google.com/search?q=griffith+observatory+foucault+pendulum

Sounds like a fun project. Please keep us updated about any progress.

Cheers,
Tom
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top