MHB How Can I Find the Integral of Arcsec(x)dx Using IBP?

  • Thread starter Thread starter pmg991818
  • Start date Start date
  • Tags Tags
    Antiderivative
pmg991818
Messages
6
Reaction score
0
Can someone help me with finding the integral of arcsec (x) dx?

Thanks

Prakash
 
Physics news on Phys.org
pmg991818 said:
Can someone help me with finding the integral of arcsec (x) dx?

Thanks

Prakash

Welcome on MHB pmg991818!...

... integrating by parts You obtain...

$\displaystyle \int \sec^{-1} x\ dx = x\ \sec^{-1} x - \int \frac {d x}{\sqrt{x^{2}-1}} = x\ \sec^{-1} x - \ln (\sqrt{x^{2}-1} + x) + c$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Welcome on MHB pmg991818!...

... integrating by parts You obtain...

$\displaystyle \int \sec^{-1} x\ dx = x\ \sec^{-1} x - \int \frac {d x}{\sqrt{x^{2}-1}} = x\ \sec^{-1} x - \ln (\sqrt{x^{2}-1} + x) + c$

Kind regards

$\chi$ $\sigma$

Thanks chisigma

I will try and work it out. If you able to show it by steps would be appreciated.

Thank you again.
 
pmg991818 said:
Thanks chisigma

I will try and work it out. If you able to show it by steps would be appreciated.

Thank you again.

The essential point is that...

$\displaystyle \frac{d}{d x} \cosh^{-1} x = \frac{1}{\sqrt{x^{2}-1}}\ (1)$

... and that for x>1 is...

$\displaystyle \cosh^{-1} x = \ln (\sqrt{x^{2} - 1} + x)\ (2)$

Kind regards

$\chi$ $\sigma$
 
I used a substitution and IBP:

$$\int\sec^{-1}x\,dx\Leftrightarrow\sec u=x\Rightarrow u\sec u-\int\sec u\,du=u\sec u-\ln\left|\sec u+\tan u\right|+C$$

$$\int\sec^{-1}x\,dx=x\sec^{-1}x-\ln\left|x+\sqrt{x^2-1}\right|+C$$
 
greg1313 said:
I used a substitution and IBP:

$$\int\sec^{-1}x\,dx\Leftrightarrow\sec u=x\Rightarrow u\sec u-\int\sec u\,du=u\sec u-\ln\left|\sec u+\tan u\right|+C$$

$$\int\sec^{-1}x\,dx=x\sec^{-1}x-\ln\left|x+\sqrt{x^2-1}\right|+C$$

Thanks Rido.
 
greg1313 said:
I used a substitution and IBP:

$$\int\sec^{-1}x\,dx\Leftrightarrow\sec u=x\Rightarrow u\sec u-\int\sec u\,du=u\sec u-\ln\left|\sec u+\tan u\right|+C$$

$$\int\sec^{-1}x\,dx=x\sec^{-1}x-\ln\left|x+\sqrt{x^2-1}\right|+C$$

Thanks Greg 1313
 
pmg991818 said:
Thanks Greg 1313

Greg,

I understand that you used IBP - arcsecx as u and dv =dx to get x. Then you have substituted for x sec u so, you get

uv = u sec u - \int sec u du. I presume you used this substitution on the basis of the right-angled triangle where sec u is x/1 giving us sec u = x. After integrating and getting ln absolute sec u + tan u, you have applied the trig substitution to get x = sec u and for tan you have applied \sqrt{x^2 -1} to get xarcsec{x} - ln|x +sqrt{x^2-1}| +C.

A bit easier to evaluate the indefinite integral than doing the whole thing by IBP.

Thank you.

Prakash
 
Then how do you evaluate

$$\int u\sec u\tan u\,du$$

without using IBP?
 
  • #10
greg1313 said:
Then how do you evaluate

$$\int u\sec u\tan u\,du$$

without using IBP?

Not quite sure how the substitution part comes together. Greg, please clarify.
 
  • #11
$$\int\sec^{-1}x\,dx$$

$$\sec u=x,\quad\sec u\tan u\,du=dx$$

So we have

$$\int u\sec u\tan u\,du$$

I think IBP is the most straightforward method to evaluate this integral.
 

Similar threads

Replies
2
Views
2K
Replies
3
Views
1K
Replies
20
Views
4K
Replies
8
Views
3K
Replies
8
Views
2K
Replies
6
Views
3K
Back
Top