pmg991818
- 6
- 0
Can someone help me with finding the integral of arcsec (x) dx?
Thanks
Prakash
Thanks
Prakash
pmg991818 said:Can someone help me with finding the integral of arcsec (x) dx?
Thanks
Prakash
chisigma said:Welcome on MHB pmg991818!...
... integrating by parts You obtain...
$\displaystyle \int \sec^{-1} x\ dx = x\ \sec^{-1} x - \int \frac {d x}{\sqrt{x^{2}-1}} = x\ \sec^{-1} x - \ln (\sqrt{x^{2}-1} + x) + c$
Kind regards
$\chi$ $\sigma$
pmg991818 said:Thanks chisigma
I will try and work it out. If you able to show it by steps would be appreciated.
Thank you again.
greg1313 said:I used a substitution and IBP:
$$\int\sec^{-1}x\,dx\Leftrightarrow\sec u=x\Rightarrow u\sec u-\int\sec u\,du=u\sec u-\ln\left|\sec u+\tan u\right|+C$$
$$\int\sec^{-1}x\,dx=x\sec^{-1}x-\ln\left|x+\sqrt{x^2-1}\right|+C$$
greg1313 said:I used a substitution and IBP:
$$\int\sec^{-1}x\,dx\Leftrightarrow\sec u=x\Rightarrow u\sec u-\int\sec u\,du=u\sec u-\ln\left|\sec u+\tan u\right|+C$$
$$\int\sec^{-1}x\,dx=x\sec^{-1}x-\ln\left|x+\sqrt{x^2-1}\right|+C$$
pmg991818 said:Thanks Greg 1313
greg1313 said:Then how do you evaluate
$$\int u\sec u\tan u\,du$$
without using IBP?