How Can I Find the Limit of the Natural Log Function in the Form of a Question?

Click For Summary

Discussion Overview

The discussion focuses on evaluating the limit of a sum involving the natural logarithm function, specifically the expression $\displaystyle\lim_{n\to\infty}\frac{2\ln(2)+3\ln(3)+...+n\ln(n)}{n^2\ln(n)}$. Participants explore various methods for simplifying and analyzing this limit, including the use of logarithmic properties, the Stolz-Cesaro theorem, and comparisons to integrals.

Discussion Character

  • Mathematical reasoning
  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant suggests using logarithm rules to simplify the numerator of the limit expression.
  • Another participant proposes applying the Stolz-Cesaro theorem, providing a detailed derivation that leads to a limit of $\frac{1}{2}$.
  • A different approach involves relating the sum to an integral, noting that the integrand is an increasing function.
  • Some participants express concerns about the justification for replacing a Riemann sum with an integral in the limit process, indicating that further justification is needed.
  • There is a discussion about the boundedness and continuity of the function $f(x) = x \ln x$ on the interval $(0,1]$, which is relevant to the Riemann integrability of the function.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the methods for evaluating the limit, with multiple competing views and concerns about the justification for certain steps in the reasoning. The discussion remains unresolved regarding the best approach to take.

Contextual Notes

Some participants note that the replacement of the Riemann sum by the integral requires further justification, and there are mentions of the limitations of the methods discussed, particularly concerning the assumptions made about the convergence and behavior of the functions involved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the

$\displaystyle\lim_{n\to\infty}\frac{2ln(2)+3ln(3)+...+nln(n)}{n^2ln(n)}$
 
Physics news on Phys.org
anemone said:
Find the

$\displaystyle\lim_{n\to\infty}\frac{2ln(2)+3ln(3)+...+nln(n)}{n^2ln(n)}$

Hi anemone,

Use the logarithm rules, \(\ln (ab)=\ln (a)+\ln (b)\mbox{ and }\ln (a^n)=n\ln (a)\) on the numerator and try to simplify it.
 
anemone said:
Find the

$\displaystyle\lim_{n\to\infty}\frac{2ln(2)+3ln(3)+...+nln(n)}{n^2ln(n)}$

A comfortable solution is given from the Stolz-Cesaro Theorem that extablishes, given two sequences $a_{n}$ and $b_{n}$, that...

$\displaystyle \lim_{n \rightarrow \infty} \frac{a_{n}}{b_{n}} = \lim_{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$ (1)

... if the limits in (1) exist. In that case $\displaystyle a_{n}=\sum_{k=1}^{n} k\ \ln k$ and $\displaystyle b_{n}=n^{2}\ \ln n$ so that is...

$\displaystyle \lim_{n \rightarrow \infty} \frac{a_{n}}{b_{n}}= \lim_{n \rightarrow \infty} \frac{(n+1)\ \ln (n+1)}{(n+1)^{2}\ \ln (n+1) - n^{2}\ \ln n}= \lim_{n \rightarrow \infty} \frac{n+1}{2n+1}= \frac{1}{2}$ (2)

Kind regards

$\chi$ $\sigma$
 
anemone said:
Find the

$\displaystyle\lim_{n\to\infty}\frac{2ln(2)+3ln(3)+...+nln(n)}{n^2ln(n)}$

One way of doing this is to relate the sum: \(\sum_{k=2}^n k\ln(k) \) to the integral \(\int_{x=2}^n x\ln(x)\;dx\) where we note that the integrand in the latter is an increasing function.

CB
 
$$\begin{align*}\lim_{n \to \infty}\sum_{r=1}^{n}\frac{r \ln(r)}{n^2 \ln(n)} &= \lim_{n \to \infty} \frac{1}{\ln(n)} \left[ \sum_{r=1}^{n}\frac{r}{n^2} \left\{ \ln{\left( \frac{r}{n}\right)+\ln(n)}\right\}\right] \\ &= \lim_{n \to \infty} \frac{1}{\ln(n)} \left[ \sum_{r=1}^{n}\frac{r}{n^2}\ln{\left( \frac{r}{n}\right)}+ \sum_{r=1}^{n}\frac{r\ln(n)}{n^2}\right] \\ &=
\lim_{n \to \infty}\frac{1}{\ln(n)} \left[ \int_{0}^{1}x \cdot \ln(x) \, dx + \frac{\ln(n)}{n^2}\sum_{r=1}^{n}r\right] \\
&=\lim_{n \to \infty}\frac{1}{\ln(n)} \left[ -\frac{1}{4} + \frac{n(n+1)\ln(n)}{2n^2}\right] \\
&=\lim_{n \to \infty} \left[ -\frac{1}{4\ln(n)}+\frac{1}{2}+\frac{1}{2n}\right] \\
&=0+\frac{1}{2}+0 \\
&=\frac{1}{2}
\end{align*}$$
 
sbhatnagar said:
$$\begin{align*}\lim_{n \to \infty}\sum_{r=1}^{n}\frac{r \ln(r)}{n^2 \ln(n)} &= \lim_{n \to \infty} \frac{1}{\ln(n)} \left[ \sum_{r=1}^{n}\frac{r}{n^2} \left\{ \ln{\left( \frac{r}{n}\right)+\ln(n)}\right\}\right] \\ &= \lim_{n \to \infty} \frac{1}{\ln(n)} \left[ \sum_{r=1}^{n}\frac{r}{n^2}\ln{\left( \frac{r}{n}\right)}+ \sum_{r=1}^{n}\frac{r\ln(n)}{n^2}\right] \\ &=
\lim_{n \to \infty}\frac{1}{\ln(n)} \left[ \int_{0}^{1}x \cdot \ln(x) \, dx + \frac{\ln(n)}{n^2}\sum_{r=1}^{n}r\right] \\
&=\lim_{n \to \infty}\frac{1}{\ln(n)} \left[ -\frac{1}{4} + \frac{n(n+1)\ln(n)}{2n^2}\right] \\
&=\lim_{n \to \infty} \left[ -\frac{1}{4\ln(n)}+\frac{1}{2}+\frac{1}{2n}\right] \\
&=0+\frac{1}{2}+0 \\
&=\frac{1}{2}
\end{align*}$$

The replacement of the Riemann sum by the integral inside the limit when going from line 2 to 3 needs more justification.

CB
 
CaptainBlack said:
The replacement of the Riemann sum by the integral inside the limit when going from line 2 to 3 needs more justification.

CB

In $(0,1]$ the function $f(x)= x\ \ln x$ is bounded [more precisely $0 \le |f(x)| \le \frac{1}{e}$...] and continuous so that is Riemann-integrable...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
In $(0,1]$ the function $f(x)= x\ \ln x$ is bounded [more precisely $0 \le |f(x)| \le \frac{1}{e}$...] and continuous so that is Riemann-integrable...

Kind regards

$\chi$ $\sigma$

1. I know the limit/integral exists

2. I know that the method can be made to work

2. You cannot replace a finite sum by the limit, inside the limit that way, it needs further justification, not much but some: The LaTeX is now unreadable, but used something like:

\[ \lim_{n \to \infty} \left( a_n b_n \right) =\left(\lim_{n \to \infty}a_n\right)\left(\lim_{n \to \infty}b_n\right) \]

CB
 
Last edited:

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K