MHB How Can I Find the Limit of the Natural Log Function in the Form of a Question?

Click For Summary
The discussion focuses on finding the limit of the natural log function expressed as the ratio of a sum involving logarithms to a polynomial term. Participants suggest using logarithmic properties to simplify the numerator and apply the Stolz-Cesaro theorem for evaluation. The limit is calculated as 1/2 through various methods, including relating the sum to an integral. There is also a discussion about the justification needed for replacing a Riemann sum with an integral in the limit process. The conversation emphasizes the importance of rigorous justification in mathematical proofs.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the

$\displaystyle\lim_{n\to\infty}\frac{2ln(2)+3ln(3)+...+nln(n)}{n^2ln(n)}$
 
Physics news on Phys.org
anemone said:
Find the

$\displaystyle\lim_{n\to\infty}\frac{2ln(2)+3ln(3)+...+nln(n)}{n^2ln(n)}$

Hi anemone,

Use the logarithm rules, \(\ln (ab)=\ln (a)+\ln (b)\mbox{ and }\ln (a^n)=n\ln (a)\) on the numerator and try to simplify it.
 
anemone said:
Find the

$\displaystyle\lim_{n\to\infty}\frac{2ln(2)+3ln(3)+...+nln(n)}{n^2ln(n)}$

A comfortable solution is given from the Stolz-Cesaro Theorem that extablishes, given two sequences $a_{n}$ and $b_{n}$, that...

$\displaystyle \lim_{n \rightarrow \infty} \frac{a_{n}}{b_{n}} = \lim_{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$ (1)

... if the limits in (1) exist. In that case $\displaystyle a_{n}=\sum_{k=1}^{n} k\ \ln k$ and $\displaystyle b_{n}=n^{2}\ \ln n$ so that is...

$\displaystyle \lim_{n \rightarrow \infty} \frac{a_{n}}{b_{n}}= \lim_{n \rightarrow \infty} \frac{(n+1)\ \ln (n+1)}{(n+1)^{2}\ \ln (n+1) - n^{2}\ \ln n}= \lim_{n \rightarrow \infty} \frac{n+1}{2n+1}= \frac{1}{2}$ (2)

Kind regards

$\chi$ $\sigma$
 
anemone said:
Find the

$\displaystyle\lim_{n\to\infty}\frac{2ln(2)+3ln(3)+...+nln(n)}{n^2ln(n)}$

One way of doing this is to relate the sum: \(\sum_{k=2}^n k\ln(k) \) to the integral \(\int_{x=2}^n x\ln(x)\;dx\) where we note that the integrand in the latter is an increasing function.

CB
 
$$\begin{align*}\lim_{n \to \infty}\sum_{r=1}^{n}\frac{r \ln(r)}{n^2 \ln(n)} &= \lim_{n \to \infty} \frac{1}{\ln(n)} \left[ \sum_{r=1}^{n}\frac{r}{n^2} \left\{ \ln{\left( \frac{r}{n}\right)+\ln(n)}\right\}\right] \\ &= \lim_{n \to \infty} \frac{1}{\ln(n)} \left[ \sum_{r=1}^{n}\frac{r}{n^2}\ln{\left( \frac{r}{n}\right)}+ \sum_{r=1}^{n}\frac{r\ln(n)}{n^2}\right] \\ &=
\lim_{n \to \infty}\frac{1}{\ln(n)} \left[ \int_{0}^{1}x \cdot \ln(x) \, dx + \frac{\ln(n)}{n^2}\sum_{r=1}^{n}r\right] \\
&=\lim_{n \to \infty}\frac{1}{\ln(n)} \left[ -\frac{1}{4} + \frac{n(n+1)\ln(n)}{2n^2}\right] \\
&=\lim_{n \to \infty} \left[ -\frac{1}{4\ln(n)}+\frac{1}{2}+\frac{1}{2n}\right] \\
&=0+\frac{1}{2}+0 \\
&=\frac{1}{2}
\end{align*}$$
 
sbhatnagar said:
$$\begin{align*}\lim_{n \to \infty}\sum_{r=1}^{n}\frac{r \ln(r)}{n^2 \ln(n)} &= \lim_{n \to \infty} \frac{1}{\ln(n)} \left[ \sum_{r=1}^{n}\frac{r}{n^2} \left\{ \ln{\left( \frac{r}{n}\right)+\ln(n)}\right\}\right] \\ &= \lim_{n \to \infty} \frac{1}{\ln(n)} \left[ \sum_{r=1}^{n}\frac{r}{n^2}\ln{\left( \frac{r}{n}\right)}+ \sum_{r=1}^{n}\frac{r\ln(n)}{n^2}\right] \\ &=
\lim_{n \to \infty}\frac{1}{\ln(n)} \left[ \int_{0}^{1}x \cdot \ln(x) \, dx + \frac{\ln(n)}{n^2}\sum_{r=1}^{n}r\right] \\
&=\lim_{n \to \infty}\frac{1}{\ln(n)} \left[ -\frac{1}{4} + \frac{n(n+1)\ln(n)}{2n^2}\right] \\
&=\lim_{n \to \infty} \left[ -\frac{1}{4\ln(n)}+\frac{1}{2}+\frac{1}{2n}\right] \\
&=0+\frac{1}{2}+0 \\
&=\frac{1}{2}
\end{align*}$$

The replacement of the Riemann sum by the integral inside the limit when going from line 2 to 3 needs more justification.

CB
 
CaptainBlack said:
The replacement of the Riemann sum by the integral inside the limit when going from line 2 to 3 needs more justification.

CB

In $(0,1]$ the function $f(x)= x\ \ln x$ is bounded [more precisely $0 \le |f(x)| \le \frac{1}{e}$...] and continuous so that is Riemann-integrable...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
In $(0,1]$ the function $f(x)= x\ \ln x$ is bounded [more precisely $0 \le |f(x)| \le \frac{1}{e}$...] and continuous so that is Riemann-integrable...

Kind regards

$\chi$ $\sigma$

1. I know the limit/integral exists

2. I know that the method can be made to work

2. You cannot replace a finite sum by the limit, inside the limit that way, it needs further justification, not much but some: The LaTeX is now unreadable, but used something like:

\[ \lim_{n \to \infty} \left( a_n b_n \right) =\left(\lim_{n \to \infty}a_n\right)\left(\lim_{n \to \infty}b_n\right) \]

CB
 
Last edited:

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
Replies
11
Views
3K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K