Indeterminate Limit: Evaluating ##\displaystyle \lim_{a \to 0^+} a^2 \log a##

  • I
  • Thread starter Mr Davis 97
  • Start date
  • Tags
    Limit
  • #1
1,462
44
##\displaystyle \lim_{a \to 0^+} a^2 \log a = 0 \cdot (- \infty)##, which is an indeterminate form.

So ##\displaystyle \lim_{a \to 0^+} a^2 \log a = \lim_{a \to 0^+} \frac{\log a}{a^{-2}} = \lim_{a \to 0^+} \frac{\frac{1}{a}}{(-2)a^{-3}} = -\frac{1}{2}\lim_{a \to 0^+} a^2 = 0##.

Is this correct?
 
Physics news on Phys.org
  • #2
Yes. I guess you are learning about Hospital's rule.
 
  • Like
Likes Mr Davis 97

Suggested for: Indeterminate Limit: Evaluating ##\displaystyle \lim_{a \to 0^+} a^2 \log a##

Replies
29
Views
2K
Replies
15
Views
1K
Replies
12
Views
979
Replies
16
Views
2K
Replies
5
Views
974
Replies
3
Views
616
Replies
2
Views
833
Replies
3
Views
601
Back
Top