Deriving Einstein Eq. from Variational Principle

Click For Summary

Homework Help Overview

The discussion revolves around deriving a specific equation related to the Christoffel symbols from the variational principle, as presented in Carroll's "Intro to Spacetime and Geometry." The original poster expresses confusion regarding the correctness of their calculations, particularly concerning index matching in their derived expressions.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to break down the derivation into first and second terms, questioning the accuracy of their index notation and whether their calculations align with the expected equation. Some participants point out potential errors in the notation and suggest that the original poster clarify their indices.

Discussion Status

The discussion is ongoing, with the original poster seeking clarification on their calculations and whether they correctly derive the intended equation. Some participants have offered observations about the notation, but there is no explicit consensus on the correctness of the derivation yet.

Contextual Notes

The original poster mentions that they have corrected a typo in their notes regarding the indices, indicating that the problem may stem from notation rather than the underlying mathematics. However, they still express uncertainty about the validity of their results.

rezkyputra
Messages
5
Reaction score
2

Homework Statement


Okay, in Carrol's Intro to Spacetime and Geometry, Chapter 4, Eq. 4.63 to 4.65 require a derivation of a difference between Christoffel Symbol. I did the calculation and found my answer to be somewhat correct in form, but the indices doesn't match up

Homework Equations


So we need someway to change this prove this eq.
\begin{equation}
g^{ab} \delta \Gamma_{bc}^a - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}

also the variation of Chirstoffel Symbol is:

\begin{equation}
\delta \Gamma_{bc}^a = -\frac{1}{2} \left(g_{qc} \, \nabla_b \, \delta g^{aq} + g_{qb} \, \nabla_c \, \delta g^{aq} - g_{rb} \, g_{sc} \, \nabla^a \, \delta g^{rs} \right)
\end{equation}

The Attempt at a Solution


So first I'll break that into the first and second term

First Term
\begin{align}
\delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, g^{ab} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \frac{1}{2} \left[g^{ab} + g^{ab} \right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left( - \delta_q^a \, \nabla_a \, \delta g^{dq} - \delta_q^b \, \nabla_b \, \delta g^{dq} + \frac{1}{2} \left[\delta_r^b \, g_{sb} + \delta_s^a \, g_{ra}\right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(- \nabla_q \, \delta g^{dq} - \nabla_q \, \delta g^{dq} + \, g_{ab} \, \nabla^d \, \delta g^{ab} \right) \nonumber \\
&= - \nabla_q \, \delta g^{dq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
&q \ is \ "loose" \ so \ just \ set \ it \ equal \ to \ c \\
&= - \nabla_c \, \delta g^{dc} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
\end{align}

Second Term

\begin{align}
- \delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, \nabla_a \, \delta g^{cq} + g_{qa} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
- g^{ad}\delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, g^{ad} \, \nabla_a \, \delta g^{cq} + g_{qa} \, g^{ad} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, g^{ad} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \delta_q^d \, \nabla_c \, \delta g^{cq} -\delta_r^d \, \nabla_s \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \nabla_c \, \delta g^{cd} - \nabla_s \, \delta g^{ds} \right) \nonumber \\
&s \ is \ "loose" \ so \ just \ set \ it \ equal \ to \ c \\
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq}
\end{align}

Now those two term adds up into

\begin{align}
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{align}

Soo the last term is correct, but the first two, whila having the same form as the answer, their indices doesn't add up (i think)

so did i miss something? or are there anything wrong in my calculation?

Thanks in advance
 
Physics news on Phys.org
Welcome to PF!
rezkyputra said:

Homework Equations


So we need someway to change this prove this eq.
\begin{equation}
g^{ab} \delta \Gamma_{bc}^a - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}
First term on left is not written correctly. You have ##a## as an upper index twice.

The Attempt at a Solution


So first I'll break that into the first and second term

First Term
\begin{align}
\delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\

\end{align}
You have ##a## as an upper index on the left but lower on the right.
 
Okay, it was a typo, i got it correct indices on my notes

so let me retype it

\begin{align}
\delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, g^{ab} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \frac{1}{2} \left[g^{ab} + g^{ab} \right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left( - \delta_q^a \, \nabla_a \, \delta g^{dq} - \delta_q^b \, \nabla_b \, \delta g^{dq} + \frac{1}{2} \left[\delta_r^b \, g_{sb} + \delta_s^a \, g_{ra}\right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(- \nabla_q \, \delta g^{dq} - \nabla_q \, \delta g^{dq} + \, g_{ab} \, \nabla^d \, \delta g^{ab} \right) \nonumber \\
&= - \nabla_q \, \delta g^{dq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
\label{eq:8}
&= - \nabla_c \, \delta g^{dc} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab}
\end{align}

Second Term
\begin{align}
- \delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, \nabla_a \, \delta g^{cq} + g_{qa} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
- g^{ad}\delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, g^{ad} \, \nabla_a \, \delta g^{cq} + g_{qa} \, g^{ad} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, g^{ad} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \delta_q^d \, \nabla_c \, \delta g^{cq} -\delta_r^d \, \nabla_s \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \nabla_c \, \delta g^{cd} - \nabla_s \, \delta g^{ds} \right) \nonumber \\
\label{eq:9}
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq}
\end{align}

they both still doesn't prove this eq

\begin{equation}
\label{eq:10}
g^{ab} \delta \Gamma_{ab}^d - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}

They still doesn't add up!
 
I believe eq's 8 and 9 do add to give eq. 10.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K