MHB How Can I Prove These Vector Calculus Relations?

Click For Summary
To prove the vector calculus relation involving the differentiable curve f(t), the user initially attempts to differentiate the expression but encounters an error in applying the quotient or chain rule. After receiving feedback, they clarify their last step and express a desire to continue exploring related concepts, including the definitions of the unit principal normal vector N and the unit binormal vector B. They seek to understand how these vectors form a right-handed orthonormal system at each point on the curve, along with explanations of the osculating, normal, and rectifying planes. The discussion reflects a progression from proving a specific relation to broader geometric interpretations in vector calculus.
WMDhamnekar
MHB
Messages
376
Reaction score
28
Hi,
Let f(t) be a differentiable curve such that $f(t)\not= 0$ for all t. How to show that $\frac{d}{dt}\left(\frac{f(t)}{||f(t)||}\right)=\frac{f(t)\times(f'(t)\times f(t))}{||f(t)||^3}\tag{1}$

My attempt:
$\frac{d}{dt}\left(\frac{1}{||f(t)||}\right)*f(t)+\frac{1}{||f(t)||}*\frac{d}{dt}(f(t))$

$\frac{||f(t)||}{f'(t)\cdot f(t)}*f(t) +\frac{1}{||f(t)||}*\frac{d}{dt}(f(t))$

I want to know whether my last step is correct or wrong.If wrong , how and where to go from here to get R.H.S.of (1)? If yes how to proceed further to get R.H.S.of (1)?
 
Physics news on Phys.org
Hi Dhamnekar,

You have a nice idea in your attempt. There is an error in the first term on your second line. You either need to apply the quotient rule to $1/\|f(t)\|$ or the chain rule to $(\|f(t)\|)^{-1}.$ Whichever method you choose, you will see that you get something similar to, but different from, what you have now.

I know you can do this, so I want to keep my hints to a minimum, at least initially. Of course, if you have more questions, I'm more than happy to help.
 
GJA said:
Hi Dhamnekar,

You have a nice idea in your attempt. There is an error in the first term on your second line. You either need to apply the quotient rule to $1/\|f(t)\|$ or the chain rule to $(\|f(t)\|)^{-1}.$ Whichever method you choose, you will see that you get something similar to, but different from, what you have now.

I know you can do this, so I want to keep my hints to a minimum, at least initially. Of course, if you have more questions, I'm more than happy to help.

Hi GJA,

If I have understood your reply correctly, then the last step in the original question is $-\frac{f(t)}{||f(t)||^2}+\frac{f'(t)}{||f(t)||}$. Now where to go from here to get R.H.S of (1)?
 
Hi,
I got the answer. :)
 
Continuing this exercise, assume that f'(t) and f''(t) are not parallel. Then $T'(t)\not=0$ so we can define unit principal normal vector N by
$$N(t)=\frac{T'(t)}{||T'(t)||}$$

Now how to show that $$N(t)=\frac{f'(t)\times (f''(t)\times f'(t))}{||f'(t)||*(||f''(t)\times f'(t)||)}$$

Continuing this execise we can define unit binormal vector B $$B(t)=T(t)\times N(t)$$ where $$T(t)=\frac{f'(t)}{||f'(t)||}$$. Note: We have already defined T'(t).
Now how to show that $$B(t)=\frac{f'(t)\times f''(t)}{||f'(t)\times f''(t)||}$$
I want to continue this exercise with one more question related to this question. How does the vectors T(t), N(t), B(t)form a right-handed system of mutually perpendicular unit vectors (called orthonormal vectors) at each point on the curve f(t)? In the answer to this question, I want to clear explanation about Osculating plane, Normal plane and Rectifying plane.:)
 
Last edited:
Dhamnekar Winod said:
Continuing this exercise, assume that f'(t) and f''(t) are not parallel. Then $T'(t)\not=0$ so we can define unit principal normal vector N by
$$N(t)=\frac{T'(t)}{||T'(t)||}$$

Now how to show that $$N(t)=\frac{f'(t)\times (f''(t)\times f'(t))}{||f'(t)||*(||f''(t)\times f'(t)||)}$$

Continuing this execise we can define unit binormal vector B $$B(t)=T(t)\times N(t)$$ where $$T(t)=\frac{f'(t)}{||f'(t)||}$$. Note: We have already defined T'(t).
Now how to show that $$B(t)=\frac{f'(t)\times f''(t)}{||f'(t)\times f''(t)||}$$
I want to continue this exercise with one more question related to this question. How does the vectors T(t), N(t), B(t)form a right-handed system of mutually perpendicular unit vectors (called orthonormal vectors) at each point on the curve f(t)? In the answer to this question, I want to clear explanation about Osculating plane, Normal plane and Rectifying plane.:)
This post #6 requires to be deleted under this original thread "Vector calculus question".
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K