Undergrad How Can I Solve for d in This Equation and What Software Can Verify It?

  • Thread starter Thread starter Mech_LS24
  • Start date Start date
  • Tags Tags
    Approach
Click For Summary
To solve for "d" in the given equation, it is identified as a likely 10th order polynomial, which may not be factorable. Recommended software for verification includes Wolfram Alpha, Mathematica, and Matlab. Substitutions such as x=0.033^2 - d^2 and y=0.033^2 + d^2 are suggested for tackling the expression. Additionally, the Weierstraß substitution may be beneficial. Utilizing these tools and methods can aid in finding a solution for "d."
Mech_LS24
Messages
148
Reaction score
16
TL;DR
I would like to solve the equation for "d".
Dear mathematicians,

I am getting stuck solving this equation for "d". And what (free)software would you recommend to check this equation?
IMG_20220827_130742__01.jpg


SolveFord.jpg


Thanks a lot!
 
Mathematics news on Phys.org
Use desmos or something or wolfram alpha
 
  • Like
Likes topsquark and Mech_LS24
Mech_LS24 said:
Summary: I would like to solve the equation for "d".

Dear mathematicians,

I am getting stuck solving this equation for "d". And what (free)software would you recommend to check this equation?
View attachment 313333

View attachment 313334

Thanks a lot!
Unless something cancels it's going to be a 10th order polynomial. And given your numbers it's highly unlikely to be factorable. W|A, Mathematica, or Matlab would be my suggestions.

-Dan
 
  • Like
Likes fresh_42 and Mech_LS24
If you really want to attack that expression, I recommend the substitutions ##x=0.033^2 -d^2 ## and ##y=0.033^2+d^2##. And you should consider using a Weierstraß substitution!
 
  • Like
Likes Mech_LS24, topsquark and malawi_glenn
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
580
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
20
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K