How Can I Use GeoGebra to Calculate Vector Lengths and Projections?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Calculations Vector
Click For Summary
SUMMARY

This discussion focuses on using GeoGebra to calculate vector lengths, angles, and projections for the vectors \( v = (1, 1, 2) \) and \( u = (-1, 0, -1) \). The participants confirmed the calculations for the lengths \( |v| = \sqrt{6} \) and \( |u| = \sqrt{2} \), the dot product \( v \cdot u = -3 \), and the cross product \( u \times v = (1, 1, -1) \). They also discussed the angle between the vectors, concluding that the correct angle is \( \frac{5\pi}{6} \) radians, and provided the projection formula \( \frac{u \cdot v}{|v|^2} v \) for use in GeoGebra, noting the absence of a dedicated projection command.

PREREQUISITES
  • Understanding of vector operations including dot product and cross product
  • Familiarity with GeoGebra commands, specifically for vector manipulation
  • Knowledge of trigonometric functions and their application in vector analysis
  • Basic understanding of vector projections and their mathematical representation
NEXT STEPS
  • Explore GeoGebra's vector commands, particularly Length and dot product functions
  • Learn how to implement vector projections in GeoGebra using the formula \( \frac{u \cdot v}{|v|^2} v \)
  • Study the geometric interpretation of angles between vectors and their significance
  • Investigate advanced vector operations in GeoGebra, including cross products and their applications
USEFUL FOR

Students, educators, and professionals in mathematics or physics who are interested in vector analysis and using GeoGebra for computational geometry.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the vectors $v=i+j+2k=(1,1,2)$ and $u=-i-k=(-1,0,-1)$.

I have calculated the following:
\begin{align*}&|v|=\sqrt{1^2+1^2+2^2}=\sqrt{1+1+4}=\sqrt{6} \\ &|u|=\sqrt{(-1)^2+0^2+(-1)^2}=\sqrt{1+0+1}=\sqrt{2} \\ &v\cdot u=(1,1,2)\cdot (-1,0,-1)=1\cdot (-1)+1\cdot 0+2\cdot (-1)=-1+0-2=-3 \\ &u\times v=\begin{vmatrix}i & j & k\\ -1 & 0 & -1 \\ 1 & 1 & 2\end{vmatrix}=i+j-k=(1,1-1) \\ &v\times u=-(u\times v)=-i-j+k=(-1-1,1) \\ &|v\times u|=\sqrt{(-1)^2+(-1)^2+1^2}=\sqrt{1+1+1}=\sqrt{3} \end{align*}

As for the angle between $u$ and $v$ in radians we have:
\begin{align*}|u\times v|=|-(v\times u)|=|v\times u|=|v|\cdot |u|\cdot \sin \theta &\Rightarrow \sin \theta=\frac{|v\times u|}{|v|\cdot |u|}=\frac{\sqrt{3}}{\sqrt{6}\cdot \sqrt{2}}=\frac{\sqrt{3}}{\sqrt{3}\cdot \sqrt{2}\cdot \sqrt{2}}=\frac{1}{2} \\ & \Rightarrow \theta=2\pi n+\frac{\pi}{6} \ \text{ or } \ \theta=2\pi n+\frac{5\pi}{6}, \ n\in \mathbb{Z}\end{align*}

The vector projection of $u$ on $v$ is:
\begin{equation*}\frac{u\cdot v}{|v|^2}v=\frac{v\cdot u}{|v|^2}v=\frac{-3}{\sqrt{6}^2}(1,1,2)=\frac{-3}{6}(1,1,2)=-\frac{1}{2}(1,1,2)=\left (-\frac{1}{2},-\frac{1}{2},-1\right )\end{equation*} Is everything correct so far? (Wondering)
Now I want calculate all the above using Geogebra. I need a little help at this.

Firstly, we have the length of the vectors $u$ and $v$. I found a manual and there is the command Length[<vector>] but it didn't work, I must have done something wrong.
Could you help me? (Wondering)
 
Physics news on Phys.org
mathmari said:
We have the vectors $v=i+j+2k=(1,1,2)$ and $u=-i-k=(-1,0,-1)$.

As for the angle between $u$ and $v$ in radians we have:
\begin{align*}|u\times v|=|-(v\times u)|=|v\times u|=|v|\cdot |u|\cdot \sin \theta &\Rightarrow \sin \theta=\frac{|v\times u|}{|v|\cdot |u|}=\frac{\sqrt{3}}{\sqrt{6}\cdot \sqrt{2}}=\frac{\sqrt{3}}{\sqrt{3}\cdot \sqrt{2}\cdot \sqrt{2}}=\frac{1}{2} \\ & \Rightarrow \theta=2\pi n+\frac{\pi}{6} \ \text{ or } \ \theta=2\pi n+\frac{5\pi}{6}, \ n\in \mathbb{Z}\end{align*}

Hey mathmari!

Shouldn't we have 1 angle?
The angle between two vectors is usually defined as the unique shortest angle between them, which is between $0$ and $\pi$ radians.
Unfortunately the cross product does not allow us to distinguish whether the angle is bigger or smaller than $\frac\pi 2$. (Worried)

Perhaps we should use the dot product? (Wondering)

mathmari said:
The vector projection of $u$ on $v$ is:
\begin{equation*}\frac{u\cdot v}{|v|^2}v=\frac{v\cdot u}{|v|^2}v=\frac{-3}{\sqrt{6}^2}(1,1,2)=\frac{-3}{6}(1,1,2)=-\frac{1}{2}(1,1,2)=\left (-\frac{1}{2},-\frac{1}{2},-1\right )\end{equation*}

Is everything correct so far?

Yep. (Nod)

mathmari said:
Now I want calculate all the above using Geogebra. I need a little help at this.

Firstly, we have the length of the vectors $u$ and $v$. I found a manual and there is the command Length[<vector>] but it didn't work, I must have done something wrong.
Could you help me?

If I type [M]v=(1,1,2)[/M], I get the vector [M]v[/M].
And when I type [M]length(v)[/M] or [M]length((1,1,2))[/M], I get its length.
What do you get? (Thinking)
 
Klaas van Aarsen said:
Shouldn't we have 1 angle?
The angle between two vectors is usually defined as the unique shortest angle between them, which is between $0$ and $\pi$ radians.
Unfortunately the cross product does not allow us to distinguish whether the angle is bigger or smaller than $\frac\pi 2$. (Worried)

Perhaps we should use the dot product? (Wondering)

Ahh ok! Now I get only $\frac{5\pi}{6}$.
Klaas van Aarsen said:
If I type [M]v=(1,1,2)[/M], I get the vector [M]v[/M].
And when I type [M]length(v)[/M] or [M]length((1,1,2))[/M], I get its length.
What do you get? (Thinking)

Now I got everything but I got stuck at the projection. Is there a command for the projection in geogebra? (Wondering)
 
mathmari said:
Ahh ok! Now I get only $\frac{5\pi}{6}$.

Now I got everything but I got stuck at the projection. Is there a command for the projection in geogebra?

Good! (Happy)

There doesn't seem to be a command for a projection, but [M](u*v)/v^2 * v[/M] works for me.
It shows up as $w=\frac{u\,v}{v^2}v$. (Thinking)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K