MHB How Can I Use GeoGebra to Calculate Vector Lengths and Projections?

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the vectors $v=i+j+2k=(1,1,2)$ and $u=-i-k=(-1,0,-1)$.

I have calculated the following:
\begin{align*}&|v|=\sqrt{1^2+1^2+2^2}=\sqrt{1+1+4}=\sqrt{6} \\ &|u|=\sqrt{(-1)^2+0^2+(-1)^2}=\sqrt{1+0+1}=\sqrt{2} \\ &v\cdot u=(1,1,2)\cdot (-1,0,-1)=1\cdot (-1)+1\cdot 0+2\cdot (-1)=-1+0-2=-3 \\ &u\times v=\begin{vmatrix}i & j & k\\ -1 & 0 & -1 \\ 1 & 1 & 2\end{vmatrix}=i+j-k=(1,1-1) \\ &v\times u=-(u\times v)=-i-j+k=(-1-1,1) \\ &|v\times u|=\sqrt{(-1)^2+(-1)^2+1^2}=\sqrt{1+1+1}=\sqrt{3} \end{align*}

As for the angle between $u$ and $v$ in radians we have:
\begin{align*}|u\times v|=|-(v\times u)|=|v\times u|=|v|\cdot |u|\cdot \sin \theta &\Rightarrow \sin \theta=\frac{|v\times u|}{|v|\cdot |u|}=\frac{\sqrt{3}}{\sqrt{6}\cdot \sqrt{2}}=\frac{\sqrt{3}}{\sqrt{3}\cdot \sqrt{2}\cdot \sqrt{2}}=\frac{1}{2} \\ & \Rightarrow \theta=2\pi n+\frac{\pi}{6} \ \text{ or } \ \theta=2\pi n+\frac{5\pi}{6}, \ n\in \mathbb{Z}\end{align*}

The vector projection of $u$ on $v$ is:
\begin{equation*}\frac{u\cdot v}{|v|^2}v=\frac{v\cdot u}{|v|^2}v=\frac{-3}{\sqrt{6}^2}(1,1,2)=\frac{-3}{6}(1,1,2)=-\frac{1}{2}(1,1,2)=\left (-\frac{1}{2},-\frac{1}{2},-1\right )\end{equation*} Is everything correct so far? (Wondering)
Now I want calculate all the above using Geogebra. I need a little help at this.

Firstly, we have the length of the vectors $u$ and $v$. I found a manual and there is teh command Length[<vector>] but it didn't work, I must have done something wrong.
Could you help me? (Wondering)
 
Physics news on Phys.org
mathmari said:
We have the vectors $v=i+j+2k=(1,1,2)$ and $u=-i-k=(-1,0,-1)$.

As for the angle between $u$ and $v$ in radians we have:
\begin{align*}|u\times v|=|-(v\times u)|=|v\times u|=|v|\cdot |u|\cdot \sin \theta &\Rightarrow \sin \theta=\frac{|v\times u|}{|v|\cdot |u|}=\frac{\sqrt{3}}{\sqrt{6}\cdot \sqrt{2}}=\frac{\sqrt{3}}{\sqrt{3}\cdot \sqrt{2}\cdot \sqrt{2}}=\frac{1}{2} \\ & \Rightarrow \theta=2\pi n+\frac{\pi}{6} \ \text{ or } \ \theta=2\pi n+\frac{5\pi}{6}, \ n\in \mathbb{Z}\end{align*}

Hey mathmari!

Shouldn't we have 1 angle?
The angle between two vectors is usually defined as the unique shortest angle between them, which is between $0$ and $\pi$ radians.
Unfortunately the cross product does not allow us to distinguish whether the angle is bigger or smaller than $\frac\pi 2$. (Worried)

Perhaps we should use the dot product? (Wondering)

mathmari said:
The vector projection of $u$ on $v$ is:
\begin{equation*}\frac{u\cdot v}{|v|^2}v=\frac{v\cdot u}{|v|^2}v=\frac{-3}{\sqrt{6}^2}(1,1,2)=\frac{-3}{6}(1,1,2)=-\frac{1}{2}(1,1,2)=\left (-\frac{1}{2},-\frac{1}{2},-1\right )\end{equation*}

Is everything correct so far?

Yep. (Nod)

mathmari said:
Now I want calculate all the above using Geogebra. I need a little help at this.

Firstly, we have the length of the vectors $u$ and $v$. I found a manual and there is the command Length[<vector>] but it didn't work, I must have done something wrong.
Could you help me?

If I type [M]v=(1,1,2)[/M], I get the vector [M]v[/M].
And when I type [M]length(v)[/M] or [M]length((1,1,2))[/M], I get its length.
What do you get? (Thinking)
 
Klaas van Aarsen said:
Shouldn't we have 1 angle?
The angle between two vectors is usually defined as the unique shortest angle between them, which is between $0$ and $\pi$ radians.
Unfortunately the cross product does not allow us to distinguish whether the angle is bigger or smaller than $\frac\pi 2$. (Worried)

Perhaps we should use the dot product? (Wondering)

Ahh ok! Now I get only $\frac{5\pi}{6}$.
Klaas van Aarsen said:
If I type [M]v=(1,1,2)[/M], I get the vector [M]v[/M].
And when I type [M]length(v)[/M] or [M]length((1,1,2))[/M], I get its length.
What do you get? (Thinking)

Now I got everything but I got stuck at the projection. Is there a command for the projection in geogebra? (Wondering)
 
mathmari said:
Ahh ok! Now I get only $\frac{5\pi}{6}$.

Now I got everything but I got stuck at the projection. Is there a command for the projection in geogebra?

Good! (Happy)

There doesn't seem to be a command for a projection, but [M](u*v)/v^2 * v[/M] works for me.
It shows up as $w=\frac{u\,v}{v^2}v$. (Thinking)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
1K
  • · Replies 26 ·
Replies
26
Views
685
  • · Replies 4 ·
Replies
4
Views
2K