MHB How Can I Visualize a $\pi/2$ Rotation About $(1,1,0)^t$ in $\mathbb{R}^3$?

kalish1
Messages
79
Reaction score
0
I am trying to visualize the following rotation of $\mathbb R^3$, but it is very difficult. I want to get the answer by intuition, and not by using the Rodrigues rotation formula or conjugation of matrices, etc.

Help please.

**Problem statement:** Determine the matrix that represents the following rotation of $\mathbb R^3$: an angle of $\pi/2$ about the fixed axis containing the vector $(1,1,0)^t$

Here is what I have tried in my diagram:

![Coordinate axes][1]

Should I find a 3x3 rotation matrix $A$ such that $A(1,1,0)^t=(-1,1,0)^t$?

[1]:
View attachment 1648
 

Attachments

  • 88MKh.png
    88MKh.png
    997 bytes · Views: 114
Last edited by a moderator:
Physics news on Phys.org
kalish said:
Should I find a 3x3 rotation matrix $A$ such that $A(1,1,0)^t=(-1,1,0)^t$?

The axis is invariant, so that should be $A(1,1,0)^t=(1,1,0)^t$ instead.

You already found a perpendicular vector (-1,1,0).
You need a 3rd vector that is perpendicular to both the axis and this one, completing an orthogonal set.
And more specifically, a vector that "turns" in the right direction.
You can find it by calculating the cross product of (1,1,0) and (-1,1,0), yielding (0,0,2).

That gives you the set of equations (note that the vectors must have equal lengths):
$$A(1,1,0)^t=(1,1,0)^t$$
$$A(-1,1,0)^t=(0,0,\sqrt 2)^t$$
$$A(0,0,\sqrt 2)^t=(1,-1,0)^t$$

Or in matrix form:
$$A \begin{bmatrix}
1 & -1 & 0 \\
1 & 1 & 0 \\
0 & 0 & \sqrt 2
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 1 \\
1 & 0 & -1 \\
0 & \sqrt 2 & 0
\end{bmatrix}$$
Solve for A.
This is easiest to do by performing matrix operations on the right that execute a gaussian elimination, ending up with an identity matrix on the left and the actual A matrix on the right.
That is, subtract multiples of one column from another, both left and right.
And swap columns, both left and right.
 
Here is a picture.

rotation.png


It is done using TikZ package 3dplot.
 
Perhaps noteworthy for visualization is that (-1,1,0) is rotated onto the positive z-axis,
which is in turn rotated to (1,-1,0).
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top